已知拋物線m:y=ax2+bx+c(a ≠ 0) 與x軸交于A、B兩點(diǎn)(點(diǎn)A在左),與y軸交于點(diǎn)C,頂點(diǎn)為M,拋物線上部分點(diǎn)的橫坐標(biāo)與對應(yīng)的縱坐標(biāo)如下表:
 
【小題1】(1)根據(jù)表中的各對對應(yīng)值,請寫出三條與上述拋物線m有關(guān)(不能直接出現(xiàn)表中各對對應(yīng)值)的不同類型的正確結(jié)論;
【小題2】(2)若將拋物線m,繞原點(diǎn)O順時針旋轉(zhuǎn)180°,試寫出旋轉(zhuǎn)后拋物線n的解析式,并在坐標(biāo)系中畫出拋物線m、n的草圖;
【小題3】(3)若拋物線n的頂點(diǎn)為N,與x軸的交點(diǎn)為E、F(點(diǎn)E、 F分別與點(diǎn)A、B對應(yīng)),試問四邊形NFMB是何種特殊四邊形?并說明其理由.


【小題1】已知拋物線m: y=ax2+bx+c(a ≠ 0) 與x軸交于A、B兩點(diǎn)(點(diǎn)A在左),與y軸交于點(diǎn)C,頂點(diǎn)為M,拋物線上部分點(diǎn)的橫坐標(biāo)與對應(yīng)的縱坐標(biāo)如下表:
 
(1)根據(jù)表中的各對對應(yīng)值,請寫出三條與上述拋物線m
有關(guān)(不能直接出現(xiàn)表中各對對應(yīng)值)的不同類型的正確結(jié)
論;
【小題2】(2)若將拋物線m,繞原點(diǎn)O順時針旋轉(zhuǎn)180°,試寫出旋轉(zhuǎn)后拋物線n的解析式,并在坐標(biāo)系中畫出拋物線m、n的草圖;
【小題3】(3)若拋物線n的頂點(diǎn)為N,與x軸的交點(diǎn)為E、F
(點(diǎn)E、 F分別與點(diǎn)A、B對應(yīng)),試問四邊形NFMB是何種特殊四邊形?并說明其理由.
答案:解:(1)答案不唯一,只要合理均可.例如:
①拋物線開口向上;
②拋物線的對稱軸為x=1;③與軸的交點(diǎn)A坐標(biāo)為(-1,0);④當(dāng)x= 4時,對應(yīng)的函數(shù)值y為5;⑤a=1,b=-2,c=-3或拋物線的解析式為:
⑥拋物線的頂點(diǎn)M(1,-4)等. (2)拋物線mn如圖1所示, 并易得A(-1,0),B(3,0),C(0,-3),則可求得拋物線m的解析式為:,M(1,-4)拋物線n的頂點(diǎn)是N(-1,4),E(1,0),F(-3,0), 解析式為:  即:  
(3)如圖2,四邊形NFMB是平行四邊形, 理由:  ∵NM 關(guān)于原點(diǎn)中心對稱,∴原點(diǎn)ONM的中點(diǎn),同理,原點(diǎn)O也是FB的中點(diǎn).故四邊形NFMB是平行四邊形.解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點(diǎn)A(x1,0)和B(x2,0),與y軸的精英家教網(wǎng)正半軸交于點(diǎn)C.如果x1、x2是方程x2-x-6=0的兩個根(x1<x2),且△ABC的面積為
152

(1)求此拋物線的解析式;
(2)求直線AC和BC的方程;
(3)如果P是線段AC上的一個動點(diǎn)(不與點(diǎn)A、C重合),過點(diǎn)P作直線y=m(m為常數(shù)),與直線BC交于點(diǎn)Q,則在x軸上是否存在點(diǎn)R,使得△PQR為等腰直角三角形?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)廊橋是我國古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為y=-
140
x2+10,為保護(hù)廊橋的安全,在該拋物線上距水面AB高為8米的點(diǎn)E、F處要安裝兩盞警示燈,求這兩盞燈的水平距離EF(精確到1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2(a>0)上有A、B兩點(diǎn),它們的橫坐標(biāo)分別為-1,2.如果△AOB(O是坐標(biāo)原點(diǎn))是直角三角形,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點(diǎn)B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點(diǎn)B,且于該拋物線交于另一點(diǎn)C(
ca
,b+8
),求當(dāng)x≥1時y1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線經(jīng)過點(diǎn)A(1,0)、B(2,-3)、C(0,4)三點(diǎn).
(1)求此拋物線的解析式;
(2)如果點(diǎn)D在這條拋物線上,點(diǎn)D關(guān)于這條拋物線對稱軸的對稱點(diǎn)是點(diǎn)C,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案