【題目】如圖,BD和CD分別平分△ABC的內(nèi)角∠EBA和外角∠ECA,BD交AC于F,連接AD.
(1)求證:∠BDC= ∠BAC;
(2)若AB=AC,請(qǐng)判斷△ABD的形狀,并證明你的結(jié)論;
(3)在(2)的條件下,若AF=BF,求∠EBA的大。
【答案】
(1)解:∵BD、CD分別平分∠EBA、∠ECA,BD交AC于F,
∴∠BDC+ ∠ABC= ∠ACE,∠BAC+∠ABC=∠ACE,
∴∠BDC+ ∠ABC= ∠BAC+ ∠ABC,
∴∠BDC= ∠BAC
(2)解:△ABD為等腰三角形,證明如下:
作DM⊥BG于M,DN⊥AC于N,DH⊥BE于H
∵BD、CD分別平分∠EBA、∠ECA,
∴DM=DH,DN=DH,
∴DM=DN,
∴AD平分∠CAG,即∠GAD=∠CAD,
∵∠GAD+∠CAD+∠BAC=180°,∠BAC+∠ABC+∠ACB=180°,
∴∠GAD+∠CAD=∠ABC+∠ACB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠GAD=∠ABC,
∴AD∥BC,
∴∠ADB=∠DBC,
又∵∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD,
∴△ABD為等腰三角形
(3)解:∵AF=BF,
∴∠BAF=∠ABF= ∠ABC,
∵∠BAF+∠ABC+∠ACB=180°,∠ABC=∠ACB,
∴ ∠ABC=180°,
∴∠ABC=72°.
【解析】(1)根據(jù)角平分線的定義得到∠BDC+ ∠ABC= ∠ACE,∠BAC+∠ABC=∠ACE,于是得到∠BDC+ ∠ABC= ∠BAC+ ∠ABC,等量代換即可得到結(jié)論;(2)作DM⊥BG于M,DN⊥AC于N,DH⊥BE于H根據(jù)角平分線的性質(zhì)得到DM=DH,DN=DH,等量代換得到DM=DN,根據(jù)三角形的內(nèi)角和得到∠GAD+∠CAD+∠BAC=180°,∠BAC+∠ABC+∠ACB=180°,推出∠GAD+∠CAD=∠ABC+∠ACB,由等腰三角形的性質(zhì)得到∠ABC=∠ACB,等量代換得到∠GAD=∠ABC,推出AD∥BC,由平行線的性質(zhì)得到∠ADB=∠DBC,證得∠ABD=∠ADB,即可得到結(jié)論;(3)根據(jù)等腰三角形的性質(zhì)得到∠BAF=∠ABF= ∠ABC,根據(jù)三角形的內(nèi)角和即可得到結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】判定兩角相等,不對(duì)的是( )
A.對(duì)頂角相等
B.兩直線平行,同位角相等
C.∵∠1=∠2,∠2=∠3,∴∠1=∠3
D.兩條直線被第三條直線所截,內(nèi)錯(cuò)角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】楊陽同學(xué)沿一段筆直的人行道行走,在由A步行到達(dá)B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對(duì)面人行道宣傳墻上的社會(huì)主義核心價(jià)值觀標(biāo)語,其具體信息匯集如下: 如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請(qǐng)根據(jù)上述信息求標(biāo)語CD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有25名同學(xué)參加某項(xiàng)比賽,預(yù)賽成績(jī)各不相同,取前13名參加決賽,其中一名同學(xué)已經(jīng)知道自己的成績(jī),能否進(jìn)入決賽,只需要再知道這25名同學(xué)成績(jī)的()
A. 最高分 B. 中位數(shù) C. 方差 D. 平均數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 一次函數(shù)是正比例函數(shù)
B. 正比例函數(shù)是一次函數(shù)
C. 不是正比例函數(shù)就一定不是一次函數(shù)
D. 正比例函數(shù)不一定是一次函數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)在一次用頻率估計(jì)概率的實(shí)驗(yàn)中統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率給出的統(tǒng)計(jì)圖如圖所示,則符合這一結(jié)果的實(shí)驗(yàn)可能是( )
A.擲一枚正六面體的骰子,出現(xiàn)5點(diǎn)的概率
B.擲一枚硬幣,出現(xiàn)正面朝上的概率
C.任意寫出一個(gè)整數(shù),能被2整除的概率
D.一個(gè)袋子中裝著只有顏色不同,其他都相同的兩個(gè)紅球和一個(gè)黃球,從中任意取出一個(gè)是黃球的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形具有而矩形不具有性質(zhì)是( 。
A. 對(duì)角線相等 B. 對(duì)角線互相平分 C. 對(duì)角線互相垂直 D. 對(duì)角線平分且相等
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com