【題目】楊陽同學(xué)沿一段筆直的人行道行走,在由A步行到達(dá)B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對(duì)面人行道宣傳墻上的社會(huì)主義核心價(jià)值觀標(biāo)語,其具體信息匯集如下: 如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請(qǐng)根據(jù)上述信息求標(biāo)語CD的長度.
【答案】解:∵AB∥CD,∴∠ABO=∠CDO, ∵OD⊥CD,∴∠CDO=90°,
∴∠ABO=90°,即OB⊥AB,
∵相鄰兩平行線間的距離相等,
∴OD=OB,
在△ABO與△CDO中,
,
∴△ABO≌△CDO(ASA),
∴CD=AB=20(m)
【解析】由AB∥CD,利用平行線的性質(zhì)可得∠ABO=∠CDO,由垂直的定義可得∠CDO=90°,易得OB⊥AB,由相鄰兩平行線間的距離相等可得OD=OB,利用ASA定理可得 △ABO≌△CDO,由全等三角形的性質(zhì)可得結(jié)果.本題主要考查了平行線的性質(zhì)和全等三角形的判定及性質(zhì)定理,綜合運(yùn)用各定理是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
①直線上一點(diǎn)到圓心的距離大于半徑,則直線與圓相離;②直線上一點(diǎn)到圓心的距離等于半徑,則直線與圓相切;③直線上一點(diǎn)到圓心的距離小于半徑,則直線與圓相交.
A.①②③B.①②C.②③D.③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師給學(xué)生出了一道題:當(dāng)x=2019,y=2018時(shí),求[2x(x2y-xy2)+xy(2xy-x2)]÷x2y的值.題目出完后,小明說:“老師給的條件y=2018是多余的.”小穎說:“不給這個(gè)條件,就不能求出結(jié)果,所以不是多余的.”你認(rèn)為他們誰說得有道理,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,點(diǎn)E在BA的延長線上,點(diǎn)D在BC邊上,且ED=EC.若△ABC的邊長為4,AE=2,則BD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在體育健康測試中,有8名男生“引體向上”的成績(單位:次)分別是:14,12,8,9,16,12,7,這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( )
A. 10,12 B. 12, 11 C. 11,12 D. 12,12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD和CD分別平分△ABC的內(nèi)角∠EBA和外角∠ECA,BD交AC于F,連接AD.
(1)求證:∠BDC= ∠BAC;
(2)若AB=AC,請(qǐng)判斷△ABD的形狀,并證明你的結(jié)論;
(3)在(2)的條件下,若AF=BF,求∠EBA的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場在銷售中發(fā)現(xiàn):某名牌襯衣平均每天可售出20件,每件襯衣盈利40元.為了迎接元旦節(jié),擴(kuò)大銷售量,減少庫存,商場決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件襯衣降價(jià)1元,商場平均每天可多售出2件.要想平均每天盈利1200元,每件襯衣應(yīng)降價(jià)多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com