如圖,已知△ABC是等邊三角形,D為邊AC的中點(diǎn),AE⊥EC,BD=EC,請(qǐng)判斷△ADE是不是等邊三角形,并說(shuō)明理由.

解:△ADE是等邊三角形,
證明:∵△ABC是等邊三角形,D為邊AC的中點(diǎn),
∴BD⊥AC,即∠ADB=90°,
由AE⊥EC知∠AEC=90°,
∵在Rt△ABD和Rt△ACE中
,
∴Rt△ABD≌Rt△ACE(HL),
∴AD=AE,
因D為邊AC的中點(diǎn),由AE⊥EC知∠AEC=90°,
∴AD=DE,
∴AD=AE=DE,即△ADE是等邊三角形,
分析:利用△ABC是等邊三角形,D為邊AC的中點(diǎn),求得∠ADB=90,再用(HL)證明△ABD≌△ACE,從而得出對(duì)應(yīng)邊相等,即可解題.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)等腰三角形的判定與性質(zhì)的理解和掌握,解答此題的關(guān)鍵是先證明△ABD≌△ACE,然后再利用三邊相等證明此三角形是等邊三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC是邊長(zhǎng)為4的正三角形,AB在x軸上,點(diǎn)C在第一象限,AC與y軸交于點(diǎn)D,點(diǎn)A精英家教網(wǎng)的坐標(biāo)為(-1,0).
(1)寫(xiě)出B,C,D三點(diǎn)的坐標(biāo);
(2)若拋物線y=ax2+bx+c經(jīng)過(guò)B,C,D三點(diǎn),求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,AB交⊙O于點(diǎn)D,DE⊥AC于點(diǎn)E.
(1)求證:DE為⊙O的切線.
(2)已知DE=3,求:弧BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,E是AC延長(zhǎng)線上一點(diǎn),選擇一點(diǎn)D,使得△CDE是等邊三角形,如果M是線段AD的中點(diǎn),N是線段BE的中點(diǎn),
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點(diǎn)D是BC延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),以AD為邊作等邊△ADE,過(guò)點(diǎn)E作BC的平行線,分別交AB,AC的延長(zhǎng)線于點(diǎn)F,G,聯(lián)結(jié)BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案