【題目】已知直線y=2x+b與反比例函數(shù)y=的(k>0)圖象交于點A,過點A作AB⊥x軸于點B,點D為線段AC的中點,BD交y軸于點E.
(1)若k=8,且點A的橫坐標(biāo)為1,求b的值;
(2)已知△BEC的面積為4,則k的值為多少?
(3)在(2)的條件下,已知點E為△ABC的重心,且OE=2,求直線AC的解析式.
【答案】(1)b=6;(2)k=8;(3)
【解析】
(1)將點的橫坐標(biāo)代入解析式,即可求得點坐標(biāo)為(1,8),再代入一次函數(shù)解析式即可求得;
(2)過點作軸與點,交軸于,易證,再分別設(shè)出每個點的坐標(biāo),即可表示出,因為點A既在拋物線上也在直線上,通過坐標(biāo)進行轉(zhuǎn)化化簡后,可以求得;
(3)△BEC的面積為4,利用重心的性質(zhì):可知DE:BE=1:2,進而可以求得△ABC的面積為12,進而求得BC、AB,過點D作DHAB于H,交軸于K,通過平行線分線段成比例,分別可求得DK、KH,即可知A點坐標(biāo),代入一次函數(shù)解析式,即可求解.
解:(1)∵,則反比例函數(shù)解析式為,將點A的橫坐標(biāo)代入解析式,
解得,故點坐標(biāo)為(1,8),再將點A代入一次函數(shù)解析式得,
解得=6;
(2)過點作軸與點,交軸于,則有,
∴,
∵為直角三角形,且點為中點,
∴,即,
∴,
在和 中 ,
∴,
∴,
設(shè)點B的坐標(biāo)為(,),則A點的坐標(biāo)為(,),C點的坐標(biāo)為(,),
G點坐標(biāo)為(,),F點坐標(biāo)為(,),
∴ ,
而點A也在一次函數(shù)圖像上,故,代入上式,整理得:
,即,而,
故,即;
(3)∵E為重心,根據(jù)重心的性質(zhì),
∴DE:BE=1:2,而,
∴,即,
∵D為AC中點,
∴,
∵,OE=,
∴BC=,
∴, 即AB= ,
過點D作DHAB于點H,交軸于點,
則有:,DH為中位線,
∴, 即,
求得:,,
即點A坐標(biāo)為(,6),再代入中,解得:.
故直線AC的解析式為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)函數(shù)時,我們經(jīng)歷了“確定函數(shù)的表達式利用函數(shù)圖象研究其性質(zhì)——運用函數(shù)解決問題“的學(xué)習(xí)過程,在畫函數(shù)圖象時,我們通過列表、描點、連線的方法畫出了所學(xué)的函數(shù)圖象
同時,我們也學(xué)習(xí)過絕對值的意義.
結(jié)合上面經(jīng)歷的學(xué)習(xí)過程,現(xiàn)在來解決下面的問題:
在函數(shù)y=|kx-1|+b中,當(dāng)x=0時,y=-2;當(dāng)x=1時,y=-3.
(1)求這個函數(shù)的表達式;
(2)在給出的平面直角坐標(biāo)系中,請直接畫出此函數(shù)的圖象并寫出這個函數(shù)的兩條性質(zhì);
(3)在圖中作出函數(shù)y=的圖象,結(jié)合你所畫的函數(shù)圖象,直接寫出不等式|kx-1|+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校對九年一班50名學(xué)生進行長跑項目的測試,根據(jù)測試成績制作了兩個統(tǒng)計圖.
請根據(jù)相關(guān)信息,解答下列問題:
(1)本次測試的學(xué)生中,得3分的學(xué)生有________人,得4分的學(xué)生有________人;
(2)求這50個數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=3,點P是邊AB上的一動點,連接DP,
(1)若將△DAP沿DP折疊,點A落在矩形的對角線上點A處,試求AP的長;
(2)點P運動到某一時刻,過點P作直線PE交BC于點E,將△DAP與△PBE分別沿DP與PE折疊,點A與點B分別落在點A,B處,若P,A,B三點恰好在同一直線上,且AB=2,試求此時AP的長.
(3)當(dāng)點P運動到邊AB的中點處時,過點P作直線PG交BC于點G,將△DAP與△PBG分別沿DP與PG折疊,點A與點B重合于點F處,請直接寫出F到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于函數(shù)的四個命題:
①當(dāng)x=0時,y有最小值12;
②n為任意實數(shù),x=3+n時的函數(shù)值大于x=3-n時的函數(shù)值;
③若n>3,且n是整數(shù),當(dāng)時,y的整數(shù)值有個;
④若函數(shù)圖象過點和,其中a>0,b>0,則a<b.
其中真命題的序號是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級男生的體能情況,體育老師從中隨機抽取部分男生進行引體向上測試,并對成績進行了統(tǒng)計,繪制成尚不完整的扇形圖和條形圖,根據(jù)圖形信息回答下列問題:
(1)本次抽測的男生有________人,抽測成績的眾數(shù)是_________;
(2)請將條形圖補充完整;
(3)若規(guī)定引體向上6次以上(含6次)為體能達標(biāo),則該校125名九年級男生中估計有多少人體能達標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
第一個等式:;
第二個等式:;
第三個等式:;
第四個等式:;
按上述規(guī)律,回答下列問題:
(1)請寫出第六個等式:a6= = ;
(2)用含n的代數(shù)式表示第n個等式:an= = ;
(3)a1+a2+a3+a4+a5+a6= (得出最簡結(jié)果);
(4)計算:a1+a2+…+an.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一個內(nèi)角為90°,且對角線相等的四邊形稱為準矩形.
(1)①如圖1,準矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD= ;
②如圖2,直角坐標(biāo)系中,A(0,3),B(5,0),若整點P使得四邊形AOBP是準矩形,則點P的坐標(biāo)是 ;(整點指橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點)
(2)如圖3,正方形ABCD中,點E、F分別是邊AD、AB上的點,且CF⊥BE,求證:四邊形BCEF是準矩形;
(3)已知,準矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當(dāng)△ADC為等腰三角形時,請直接寫出這個準矩形的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年8月.山西龍城將迎來全國第二屆青年運動會,盛會將至,整個城市已經(jīng)進入了全力準備的狀態(tài).太職學(xué)院足球場作為一個重要比賽場館.占地面積約24300平方米.總建筑面積4790平方米,設(shè)有2476個座位,整體建筑簡潔大方,獨具特色.2018年3月15日該場館如期開工,某施工隊負責(zé)安裝該場館所有座位,在安裝完476個座位后,采用新技術(shù),效率比原來提升了.結(jié)來比原計劃提前4天完成安裝任務(wù).求原計劃每天安裝多少個座位.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com