【題目】下列關于函數(shù)的四個命題:
①當x=0時,y有最小值12;
②n為任意實數(shù),x=3+n時的函數(shù)值大于x=3-n時的函數(shù)值;
③若n>3,且n是整數(shù),當時,y的整數(shù)值有個;
④若函數(shù)圖象過點和,其中a>0,b>0,則a<b.
其中真命題的序號是( 。
A.①B.②C.③D.④
【答案】C
【解析】
將二次函數(shù)配方,即可求得最值,可判斷①錯誤;根據(jù)二次函數(shù)的對稱軸是, 與關于對稱,函數(shù)值相等,即可判斷②錯誤;根據(jù)二次函數(shù)的對稱軸是,當a>0,b>0,且在對稱軸右側、在對稱軸左側時,有的情況,可判斷④錯誤;當時,利用函數(shù)值作差,即可求得整數(shù)值的個數(shù),可判斷③正確.
解:,故當時有最小值,①錯誤;
∵的對稱軸為,故當和時函數(shù)值相等, ②錯誤;
當在對稱軸右側,在對稱軸左側,且時,可以取到(,),(,),此時,④錯誤;
∵,則在對稱軸的右側,
當時,函數(shù)值,當時,函數(shù)值,
令函數(shù)值作差,則,
故整數(shù)值的個數(shù)為:個,③正確.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD邊長為2,E是AB的中點,以E為圓心,線段ED的長為半徑作半圓,交直線AB于點M,N,分別以線段MD,ND為直徑作半圓,則圖中陰影部分的面積為_____________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形的邊長為2,點是邊上的一點,以為直徑在正方形內作半圓,將沿著翻折,點恰好落在半圓上的點處,則的長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“校園音樂之聲“結束后,王老師整理了所有參賽選手的比賽成績(單位:分),繪制成如下頻數(shù)直方圖和扇形統(tǒng)計圖:
(1)求本次比賽參賽選手總人數(shù),并補全頻數(shù)直方圖;
(2)求扇形統(tǒng)計圖中扇形E的圓心角度數(shù);
(3)成績在E區(qū)域的選手中,男生比女生多一人,從中隨機選取兩人,求恰好選中兩名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了解本校學生平均每天的課外學習時間情況,隨機抽取部分學生進行問卷調查,并將調查結果分為A,B,C,D四個等級,設學習時間為t(小時),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根據(jù)調查結果繪制了如圖所示的兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中信息解答下列問題:
(1)本次抽樣調查共抽取了____名學生,并將條形統(tǒng)計圖補充完整;
(2)本次抽樣調查中,學習時間的中位數(shù)落在____等級內;
(3)表示B等級的扇形圓心角α的度數(shù)是_____°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=2x+b與反比例函數(shù)y=的(k>0)圖象交于點A,過點A作AB⊥x軸于點B,點D為線段AC的中點,BD交y軸于點E.
(1)若k=8,且點A的橫坐標為1,求b的值;
(2)已知△BEC的面積為4,則k的值為多少?
(3)在(2)的條件下,已知點E為△ABC的重心,且OE=2,求直線AC的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑AC是弦,∠BAC的平分線AD交⊙O于點D,DE⊥AC交AC的延長線于點E,連接OE,OE交AD于點F.
(1)求證:DE是⊙O的切線;
(2)若,求的值;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,防洪大堤的橫斷面是梯形,背水坡AB的坡度i=1:,且AB=20m.身高為1.7m的小明站在大堤A點,測得髙壓電線桿頂端點D的仰角為30°.已知地面CB寬30m,求小明到電線桿的距離和髙壓電線桿CD的髙度(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校九年級男生的體能情況,體育老師從中隨機抽取部分男生進行引體向上測試,并對成績進行了統(tǒng)計,繪制成尚不完整的扇形圖和條形圖,根據(jù)圖形信息回答下列問題:
(1)本次抽測的男生有________人,抽測成績的眾數(shù)是_________;
(2)請將條形圖補充完整;
(3)若規(guī)定引體向上6次以上(含6次)為體能達標,則該校125名九年級男生中估計有多少人體能達標?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com