(2005•烏蘭察布)圖1是由五個(gè)邊長(zhǎng)都是1的正方形紙片拼接而成的,過(guò)點(diǎn)A1的直線(xiàn)分別與BC1、BE交于點(diǎn)M、N,且圖1被直線(xiàn)MN分成面積相等的上、下兩部分.

(1)求的值;
(2)求MB、NB的長(zhǎng);
(3)將圖1沿虛線(xiàn)折成一個(gè)無(wú)蓋的正方體紙盒(圖2)后,求點(diǎn)M、N間的距離.
【答案】分析:(1)本題可通過(guò)相似三角形A1B1M和NBM得出的關(guān)于NB,A1B1,MB,MB1的比例關(guān)系式來(lái)求,比例關(guān)系式中A1B1,BB1均為正方形的邊長(zhǎng),長(zhǎng)度都是1,因此可將它們的值代入比例關(guān)系式中,將所得的式子經(jīng)過(guò)變形即可得出所求的值;
(2)由于直線(xiàn)MN將圖(1)的圖形分成面積相等的兩部分,因此△BMN的面積為,由此可求出MB•NB的值,根據(jù)(1)已經(jīng)得出的MB+NB=MB•NB可求出MB+NB的值,由此可根據(jù)韋達(dá)定理列出以MB,NB為根的一元二次方程,經(jīng)過(guò)解方程即可求出MB、NB的值;
(3)根據(jù)(2)的結(jié)果,不難得出B1M=EN,由于折疊后E與B點(diǎn)重合,因此B1M=BN,那么四邊形B1MNB是個(gè)矩形,因此MN的長(zhǎng)為正方形的邊長(zhǎng).
解答:解:(1)∵△A1B1M∽△NBM且A1B1=BB1=1,
,

整理,得MB+NB=MB•NB,
兩邊同除以MB•NB得


(2)由題意得,
即MB•NB=5,
又由(1)可知MB+NB=MB•NB=5,
∴MB、NB分別是方程x2-5x+5=0的兩個(gè)實(shí)數(shù)根.
解方程,得x1=,x2=
∵M(jìn)B<NB,
∴MB=,NB=;

(3)由(2)知B1M=-1=,
EN=4-=
∵圖(2)中的BN與圖(1)中的EN相等,
∴BN=B1M;
∴四邊形BB1MN是矩形,
∴MN的長(zhǎng)是1.
點(diǎn)評(píng):本題主要考查了相似三角形的判定和性質(zhì),正方形的性質(zhì),一元二次方程的應(yīng)用等知識(shí)點(diǎn),綜合性比較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2005•烏蘭察布)如圖,已知AC平分∠PAQ,點(diǎn)B,B′分別在邊AP,AQ上.下列條件中不能推出AB=AB′的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2005•烏蘭察布)已知拋物線(xiàn)y=x2-2x-3,將y=x2-2x-3用配方法化為y=a(x-h)2+k的形式,并指出對(duì)稱(chēng)軸、頂點(diǎn)坐標(biāo)及圖象與x軸、y軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

(2005•烏蘭察布)一個(gè)函數(shù)的圖象過(guò)點(diǎn)(1,2),則這個(gè)函數(shù)的解析式是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年內(nèi)蒙古烏蘭察布市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•烏蘭察布)已知拋物線(xiàn)y=x2-2x-3,將y=x2-2x-3用配方法化為y=a(x-h)2+k的形式,并指出對(duì)稱(chēng)軸、頂點(diǎn)坐標(biāo)及圖象與x軸、y軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年內(nèi)蒙古烏蘭察布市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2005•烏蘭察布)一個(gè)函數(shù)的圖象過(guò)點(diǎn)(1,2),則這個(gè)函數(shù)的解析式是   

查看答案和解析>>

同步練習(xí)冊(cè)答案