【題目】如圖,AB是⊙O直徑,C是半圓上一點(diǎn),連接BC、AC,過點(diǎn)O作OD∥BC與過點(diǎn)A的切線交于點(diǎn)D,連接DC并延長交AB的延長線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AE=3,CE=,求線段CE、BE與劣弧BC所圍成的圖形面積(結(jié)果保留根號(hào)和π).
【答案】(1)見解析;(2) ﹣.
【解析】
(1)如圖,連接OC.欲證DE是⊙O的切線,只需證得OC⊥DE;
(2)設(shè)AD=CD=x,Rt△ADE中,由AD2+AE2=DE2求得x的值,從而得出DE=2AD,據(jù)此知∠E=30°、∠BOC=60°,設(shè)圓的半徑為r,在Rt△OCE中由OC2+CE2=OE2可得r的值,根據(jù)S=S△COE-S扇形BOC求解可得.
(1)如圖,連接OC,
∵AD是過點(diǎn)A的切線,AB是⊙O的直徑,
∴AD⊥AB,
∴∠DAB=90°.
∵OD∥BC,
∴∠1=∠2,∠3=∠4.
∵OC=OB,
∴∠2=∠4.
∴∠1=∠3.
在△COD和△AOD中,
∵
∴△COD≌△AOD(SAS)
∴∠OCD=∠DAB=90°,即OC⊥DE于點(diǎn)C.
∵OC是⊙O的半徑,
∴DE是⊙O的切線;
(2)設(shè)AD=x,
由△COD≌△AOD知CD=AD=x,
在Rt△ADE中,由AD2+AE2=DE2可得x2+32=(+x)2,
解得:x=,
則AD=、DE=2,
∴sin∠E=,
∴∠E=30°,
∵∠ACE=90°,
∴∠COB=60°,
設(shè)圓的半徑為r,
在Rt△OCE中,由OC2+CE2=OE2可得r2+()2=(3﹣r)2,
解得:r=1,
則S=S△COE﹣S扇形BOC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】符合下列條件之一的四邊形不一定是菱形的是( )
A. 四條邊相等
B. 兩組鄰邊分別相等
C. 對(duì)角線相互垂直平分
D. 兩條對(duì)角線分別平分一組對(duì)角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為( 。
A. (,0) B. (2,0) C. (,0) D. (3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市有一塊長為(3a+b)米、寬為(2a+b)米的長方形地塊,中間是邊長為(a+b)米的正方形,規(guī)劃部門計(jì)劃將在中間的正方形修建一座雕像,四周的陰影部分進(jìn)行綠化.
(1)綠化的面積是多少平方米?(用含字母a、b的式子表示)
(2)求出當(dāng)a=10,b=12時(shí)的綠化面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠AOB=90°,OM是∠AOB的平分線,將三角板的直角頂點(diǎn)P在射線OM上滑動(dòng),兩直角邊分別與OA、OB交于C、 D. 求證:PC=PD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O上有一個(gè)動(dòng)點(diǎn)A和一個(gè)定點(diǎn)B,令線段AB的中點(diǎn)是點(diǎn)P,過點(diǎn)B作⊙O的切線BQ,且BQ=3,現(xiàn)測(cè)得的長度是,的度數(shù)是120°,若線段PQ的最大值是m,最小值是n,則mn的值是( 。
A. 3 B. 2 C. 9 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是△ABC的高線,CE是△ABC的角平分線,它們相交于點(diǎn)P.
(1)若∠B=40°,∠AEC=75°,求證:AB=BC;
(2)若∠BAC=90°,AP為△AEC邊EC上中線,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,兩個(gè)含有30°角的完全相同的三角板ABC和DEF沿直線l滑動(dòng),下列說法錯(cuò)誤的是( )
A. 四邊形ACDF是平行四邊形 B. 當(dāng)點(diǎn)E為BC中點(diǎn)時(shí),四邊形ACDF是矩形
C. 當(dāng)點(diǎn)B與點(diǎn)E重合時(shí),四邊形ACDF是菱形 D. 四邊形ACDF不可能是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣2,0),點(diǎn)B(0,2).
(1)直接寫求∠BAO的度數(shù);
(2)如圖1,將△AOB繞點(diǎn)O順時(shí)針得△A′OB′,當(dāng)A′恰好落在AB邊上時(shí),設(shè)△AB′O的面積為S1,△BA′O的面積為S2,S1與S2有何關(guān)系?為什么?
(3)若將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com