【題目】符合下列條件之一的四邊形不一定是菱形的是(

A. 四條邊相等

B. 兩組鄰邊分別相等

C. 對角線相互垂直平分

D. 兩條對角線分別平分一組對角

【答案】B

【解析】

根據(jù)菱形的判定定理即可判斷A;舉出反例圖形即可判斷B;根據(jù)線段垂直平分線定理推出AB=AD,BC=CD,AB=BC,推出AB=BC=CD=AD,根據(jù)菱形的判定推出即可判斷C;求出四邊形ABCD是平行四邊形,推出即可判斷D.

A、AB=BC=CD=AD,
∴四邊形ABCD是菱形,正確,故本選項錯誤;
B、根據(jù)AB=AD,BC=CD,不能推出四邊形ABCD是菱形,如圖2,
錯誤,故本選項正確;
C、如圖1, ACBD,OD=OB,
AB=AD,BC=CD,
BDAC,AO=CO,
AB=BC,
AB=BC=CD=AD,
∴四邊形ABCD是菱形,正確,故本選項錯誤;


D、如圖1, AC平分∠BAD和∠BCD,
∴∠1=2, 3=4,
∵∠1+3+ABC=180°, 2+4+ADC=1880°,
∴∠ABC=ADC,
同理可證∠BAD=BCD,
∴四邊形ABCD是平行四邊形,
ADBC,
∴∠2=3,
∵∠1=2,
∴∠1=3,
AB=BC,
∴平行四邊形ABCD是菱形,正確,故本選項錯誤.
故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于點,與軸交于,兩點(點軸正半軸上),為等腰直角三角形,且面積為,現(xiàn)將拋物線沿方向平移,平移后的拋物線過點時,與軸的另一點為,其頂點為,對稱軸與軸的交點為

、的值.

連接,試判斷是否為等腰三角形,并說明理由.

現(xiàn)將一足夠大的三角板的直角頂點放在射線或射線上,一直角邊始終過點,另一直角邊與軸相交于點,是否存在這樣的點,使以點、、為頂點的三角形與全等?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,扇形OMN的圓心角為45°,正方形A1B1C1A2的邊長為2,頂點A1,A2在線段OM上,頂點B1在弧MN上,頂點C1在線段ON上,在邊A2C1上取點B2,以A2B2為邊長繼續(xù)作正方形A2B2C2A3,使得點C2在線段ON上,點A3在線段OM上,……,依次規(guī)律,繼續(xù)作正方形,則A2018M=__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠ACB=∠ADB=90°,EAB中點,連接DE、CE、CD

(1)求證:DE=CE

(2)若∠CAB=25°,∠DBA=35°,判斷△DEC的形狀,并說明理由;

(3)當∠CAB+∠DBA=45°時,若CD=12,取CD中點F,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在中,,,動點從點出發(fā),以每秒個單位的速度沿方向向終點運動;同時,動點也從點出發(fā),以每秒個單位的速度沿方向向終點運動.設兩點運動的時間為

連接,在點、運動過程中,是否始終相似?請說明理由;

連接,設的面積為,求關于的函數(shù)關系式;

連接,是否存在的值,使?若存在,求出的值;若不存在,請說明理由;

探索:把沿直線折疊成,設交于點,當是直角三角形時,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】符合下列條件之一的四邊形不一定是菱形的是(

A. 四條邊相等

B. 兩組鄰邊分別相等

C. 對角線相互垂直平分

D. 兩條對角線分別平分一組對角

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某品牌化妝品商店有、三種型號的化妝品,今年國慶節(jié)期間采用組合打折銷售,銷售時采用了三種組合的方式進行銷售,甲種組合是:種, 種, 種;乙種組合是: 種,種;丙種組合是: 種,種,.如果組合銷售打折后A種每盒售價為元, 種每盒售價為元, 種每盒售價為.國慶節(jié)當天,商店采用三種組合搭配的方式進行銷售后共得銷售額為元,其中 種的銷售額為元,那么種化妝品的銷售額是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

1)在圖中的點上標出相應字母A、B、C,并求出ABC的面積;

2)在圖中作出ABC關于y軸的對稱圖形A1B1C1;

3)寫出點A1,B1,C1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:∠AOB=90°,OM是∠AOB的平分線,將三角板的直角頂點P在射線OM上滑動,兩直角邊分別與OAOB交于C、 D. 求證:PC=PD.

查看答案和解析>>

同步練習冊答案