【題目】某商場推出兩種優(yōu)惠方法,甲種方法:購買一個書包贈送一支筆;乙種方法:購買書包和筆一律按九折優(yōu)惠,書包20元/個,筆5元/支,小明和同學需購買4個書包,筆若干(不少于4支).
(1)分別寫出兩種方式購買的費用y(元)與所買筆支數(shù)x(支)之間的函數(shù)關系式;
(2)如果商場允許可以任意選擇一種優(yōu)惠方式,也可以同時用兩種方式購買,請你就購買4個書包12支筆,設計一種最省錢的購買方式.
【答案】(1)y=5x+60, y乙=4.5x+72;(2)用甲種方法購買4個書包,用乙種方法購買8支筆最省錢.
【解析】
(1)根據(jù)購買的費用等于書包的費用加筆的費用就可以得出結論;
(2)由條件分析可以得出用一種方式購買選擇甲商場求出費用,若兩種方法都用,設用甲種方法購書包a個,則用乙種方法購書包(4a)個,總費用為y,列出函數(shù)關系式,再根據(jù)一次函數(shù)的性質就可以求出結論.
解:(1)由題意得:
y=20×4+5(x-4)=5x+60,
y乙=90%(20×4+5x)=4.5x+72;
(2)用一種方法購買4個書包,12支筆時,
①選甲種方式需支出y=5×12+60=120(元),
②選乙種方式需支付y=4.5×12+72=126(元)
③若兩種方法都用,設用甲種方法購書包a個,則用乙種方法購書包(4-a)個,
總費用y=20a+90%[20(4-a)+5(12-a)](0<x≤4)
∴y=-2.5a+126
由k=-2.5<0,則y隨a增大而減小,即當a=4時 y最小=116(元)
綜上所述,用甲種方法購買4個書包,用乙種方法購買8支筆最省錢.
科目:初中數(shù)學 來源: 題型:
【題目】某批乒乓球的質量檢驗結果如下:
(1)畫出這批乒乓球“優(yōu)等品”頻率的折線統(tǒng)計圖;
(2)這批乒乓球“優(yōu)等品”的概率的估計值是多少?
(3)從這批乒乓球中選擇5個黃球、13個黑球、22個紅球,它們除顏色外都相同,將它們放入一個不透明的袋中.
①求從袋中摸出一個球是黃球的概率;
②現(xiàn)從袋中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻后使從袋中摸出一個是黃球的概率不小于,問至少取出了多少個黑球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A(0,a),B(b,a),且a,b滿足(a﹣3)2+|b﹣6|=0,現(xiàn)同時將點A,B分別向下平移3個單位,再向左平移2個單位,分別得到點A,B的對應點C,D,連接AC,BD,AB.
(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABCD;
(2)在y軸上是否存在一點M,連接MC,MD,使S△MCD=S四邊形ABCD?若存在這樣一點,求出點M的坐標,若不存在,試說明理由;
(3)點P是直線BD上的一個動點,連接PA,PO,當點P在BD上移動時(不與B,D重合),直接寫出∠BAP,∠DOP,∠APO之間滿足的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】畫出函數(shù)y1=-x+1,y2=2x-5 的圖象,利用圖象回答下列問題:
(1)方程組的解是_______________.
(2)y1隨x增大而_________, y2隨x增大而________.
(3)當y1>y2時,x的取值范圍 是_______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校開展課外體育活動,決定開展:籃球、乒乓球、踢毽子、跑步四種活動項目.為了解學生最喜歡哪一種活動項目(每人只選取一種).隨機抽取了部分學生進行調查,并將調查結果繪成如下統(tǒng)計圖,請你結合圖中信息解答下列問題.
(1)樣本中最喜歡籃球項目的人數(shù)所占的百分比為 ,其所在扇形統(tǒng)計圖中對應的圓心角度數(shù)是 度;
(2)請把條形統(tǒng)計圖補充完整;
(3)若該校有學生1000人,請根據(jù)樣本估計全校最喜歡踢毽子的學生人數(shù)約是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知直線,點,在直線上,點,在直線上,且,若保持不動,線段向右勻速平移,如圖2反映了的長度隨時間的變化而變化的情況,則:
(1)在線段開始平移之前, ;
(2)線段向右平移了 ,向右平移的速度是 ;
(3)如圖3反映了的面積隨時間的變化而變化的情況,則
①平行線,之間的距離是 ;
②當時,直接寫出關于的函數(shù)關系式(不必化簡).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側的兩點,連接BD并延長至點C,使得CD=BD,連接AC交⊙O于點F,連接AE、DE、DF.
(1)證明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度數(shù);
(3)設DE交AB于點G,若DF=4,cosB=,E是弧AB的中點,求EGED的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】織里某品牌童裝在甲、乙兩家門店同時銷售A,B兩款童裝,4月份甲門店銷售A款童裝60件,B款童裝15件,兩款童裝的銷售總額為3600元,乙門店銷售A款童裝40件,B款童裝60件,兩款童裝的銷售總額為4400元.
(1)A款童裝和B款童裝每件售價各是多少元?
(2)現(xiàn)計劃5月將A款童裝的銷售額增加20%,問B款童裝的銷售額需增加百分之幾,才能使A,B兩款童裝的銷售額之比為4:3?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形各頂點的坐標分別為,,,,將四邊形先向上平移3個單位長度,再向左平移5個單位長度,得到四邊形.
(1)在圖中畫出四邊形,并寫出點的對應點的坐標;
(2)如果將四邊形看成是由四邊形經過一次平移得到的,請指出這一平移的平移方向和平移距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com