【題目】如圖,長方形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點(diǎn)A(2,0)同時出發(fā),沿長方形BCDE的邊作環(huán)繞運(yùn)動.物體甲按逆時針方向以1個單位/秒勻速運(yùn)動,物體乙按順時針方向以2個單位/秒勻速運(yùn)動,則兩個物體運(yùn)動后的第2017次相遇地點(diǎn)的坐標(biāo)是 .
【答案】(﹣1,1)
【解析】解:矩形的邊長為4和2,因為物體乙是物體甲的速度的2倍,時間相同,物體甲與物體乙的路程比為1:2,由題意知: 第一次相遇物體甲與物體乙行的路程和為12×1,物體甲行的路程為12× =4,物體乙行的路程為12× =8,在BC邊相遇;
第二次相遇物體甲與物體乙行的路程和為12×2,物體甲行的路程為12×2× =8,物體乙行的路程為12×2× =16,在DE邊相遇;
第三次相遇物體甲與物體乙行的路程和為12×3,物體甲行的路程為12×3× =12,物體乙行的路程為12×3× =24,在A點(diǎn)相遇;
…
此時甲乙回到原出發(fā)點(diǎn),則每相遇三次,兩點(diǎn)回到出發(fā)點(diǎn),
∵2015÷3=671…2,
故兩個物體運(yùn)動后的第2015次相遇地點(diǎn)的是:第二次相遇地點(diǎn),
即物體甲行的路程為12×2× =8,物體乙行的路程為12×2× =16,在DE邊相遇;
此時相遇點(diǎn)的坐標(biāo)為:(﹣1,1).
故答案為:(﹣1,1).
利用行程問題中的相遇問題,由于矩形的邊長為4和2,物體乙是物體甲的速度的2倍,求得每一次相遇的地點(diǎn),找出規(guī)律即可解答.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組線段中,能成比例的是( 。.
A.1cm,3cm,4cm,6cm
B.30cm,12cm,0.8cm,0.2cm
C.0.1cm,0.2cm,0.3cm,0.4cm
D.12cm,16cm,45cm,60cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校環(huán)保志愿者協(xié)會對該市城區(qū)的空氣質(zhì)量進(jìn)行調(diào)查,從全年365天中隨機(jī)抽取了80天的空氣質(zhì)量指數(shù)(AQI)數(shù)據(jù),繪制出三幅不完整的統(tǒng)計圖表.請根據(jù)圖表中提供的信息解答下列問題:
AQI指數(shù) | 質(zhì)量等級 | 天數(shù)(天) |
0﹣50 | 優(yōu) | m |
51﹣100 | 良 | 44 |
101﹣150 | 輕度污染 | n |
151﹣200 | 中度污染 | 4 |
201﹣300 | 重度污染 | 2 |
300以上 | 嚴(yán)重污染 | 2 |
(1 )統(tǒng)計表中m= ,n= .扇形統(tǒng)計圖中,空氣質(zhì)量等級為“良”的天數(shù)占 %;
(2)補(bǔ)全條形統(tǒng)計圖,并通過計算估計該市城區(qū)全年空氣質(zhì)量等級為“優(yōu)”和“良”的天數(shù)共多少天?
(3)據(jù)調(diào)查,嚴(yán)重污染的2天發(fā)生在春節(jié)期間,燃放煙花爆竹成為空氣污染的一個重要原因,據(jù)此,請你提出一條合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果點(diǎn)P(m+3,m+1)在直角坐標(biāo)系的x軸上,P點(diǎn)坐標(biāo)為( )
A.(0,2)
B.(2,0)
C.(4,0)
D.(0,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AGE+∠AHF=180°,∠BEC=∠BFC,則∠A與∠D相等嗎?下面是童威同學(xué)的推導(dǎo)過程,請你幫助他在括號內(nèi)填上推導(dǎo)依據(jù) ∵∠AGE+∠AHF=180°(已知)
∠AGE=∠CGD ()
∴∠CGD+∠AHF=180°
∴CE∥BF ()
∴∠BEC+∠B=180°
∵∠BFC+∠BFD=180°
∠BEC=∠BFC(已知)
∴∠B=∠BFD ()
∴AB∥CD
∴∠A=∠D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,D為AB上一點(diǎn),E為AC上一點(diǎn),添加一個條件(只能填一個)可以使得△ABC與△ADE相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用10米長的鋁材制成一個矩形窗框,使它的面積為6平方米.若設(shè)它的一條邊長為x米,則根據(jù)題意可列出關(guān)于x的方程為( 。
A.x(5+x)=6
B.x(5-x)=6
C.x(10-x)=6
D.x(10-2x)=6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com