正方形紙片折一次,沿折痕剪開,能剪得的圖形是
A.銳角三角形B.鈍角三角形C.梯形D.菱形
C
分析:此題可以直接作圖,由圖形求得答案,也可利用排除法求解.
解答:解:如圖:若沿著EF剪下,可得梯形ABEF與梯形FECD,
∴能剪得的圖形是梯形;
∵如果剪得的有三角形,則一定是直角三角形,
∴排除A與B;
如果有四邊形,則一定有兩個角為90°,且有一邊為正方形的邊,
∴不可能是菱形,排除D.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(11·曲靖)已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,
則四邊形DBFE的周長為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(11·佛山)閱讀材料
我們經(jīng)常通過認識一個事物的局部或其特殊類型,來逐步認識這個事物;
比如我們通過學(xué)習(xí)兩類特殊的四邊形,即平行四邊形和梯形(繼續(xù)學(xué)習(xí)它們的特殊類型如矩形、等腰梯形等)來逐步認識四邊形;
我們對課本里特殊四邊形的學(xué)習(xí),一般先學(xué)習(xí)圖形的定義,再探索發(fā)現(xiàn)其性質(zhì)和判定方法,然后通過解決簡單的問題鞏固所學(xué)知識;
請解決以下問題:
如圖,我們把滿足AB=CD、CB=CD且AB≠BC的四邊形ABCD叫做“箏形”;
(1)寫出箏形的兩個性質(zhì)(定義除外);
(2)寫出箏形的兩個判定方法(定義除外),并選出一個進行證明;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖5,在正方形ABCD中,E、F分別是邊BC、CD的中點,AE交BF于點H,CG∥AE交BF于點G。下列結(jié)論:①tan∠HBE=cot∠HEB  ②    ③BH=FG   ④.其中正確的序號是

A. ①②③    B. ②③④        C. ①③④         D. ①②④                                                   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在梯形ABCD中,AB∥CD,AD=BC,點E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,則下列結(jié)論一定正確的是(■).
A.∠HGF=∠GHEB.∠GHE=∠HEF
C.∠HEF=∠EFGD.∠HGF=∠HEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

手工課上,小明準備做一個形狀是菱形的風箏,這個菱形的兩條對角線長度之和恰好為60cm,菱形的面積S(單位:cm2)隨其中一條對角線的長x(單位:cm)的變化而變化.
(1)請直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)當x是多少時,菱形風箏面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011湖南衡陽,26,10分)如圖,在矩形ABCD中,AD=4,AB=m(m>4),點PAB邊上的任意一點(不與AB重合),連結(jié)PD,過點PPQPD,交直線BC于點Q
(1)當m=10時,是否存在點P使得點Q與點C重合?若存在,求出此時AP的長;若不存在,說明理由;
(2)連結(jié)AC,若PQAC,求線段BQ的長(用含m的代數(shù)式表示)
(3)若△PQD為等腰三角形,求以PQ、CD為頂點的四邊形的面積Sm之間的函數(shù)關(guān)系式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延長線于點E.

求證:DE=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2011•臨沂)如圖,?ABCD,E是BA延長線上一點,AB=AE,連接CE交AD于點F,若CF平分∠BCD,AB=3,則BC的長為____________.

查看答案和解析>>

同步練習(xí)冊答案