分析 (1)(2)根據已知等式解答即可;
(3)根據已知等式可得第n個等式為$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$;
(4)根據規(guī)律計算即可.
解答 解:(1)$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=\frac{3}{4}$;
(2)$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{9×10}$
=$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{9}-\frac{1}{10}$
=$\frac{9}{10}$;
(3)$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$;
(4)$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2006×2007}$=$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{2006}-\frac{1}{2007}=\frac{2006}{2007}$;
故答案為:$\frac{3}{4};\frac{1}{n}-\frac{1}{n+1};\frac{2006}{2007}$
點評 本題主要考查分式的混合運算,熟練掌握分式的混合運算法則是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | ①② | B. | ①②④ | C. | ①②③ | D. | ①②③④ |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com