如圖,某數(shù)學(xué)課外實(shí)習(xí)小組想利用樹(shù)影測(cè)量樹(shù)高,他們?cè)谕粫r(shí)刻測(cè)得一身高為1.5米的同學(xué)的影子長(zhǎng)為1.35米,因大樹(shù)靠近一棟建筑物,大樹(shù)的影子不全在地面上,他們測(cè)得地面部分的影子長(zhǎng)為BC=3.6米,墻上影子CD=1.8米,求樹(shù)高AB.
考點(diǎn):相似三角形的應(yīng)用
專題:
分析:在同一時(shí)刻,物體的實(shí)際高度和影長(zhǎng)成比例,據(jù)此列方程即可解答.
解答:解:過(guò)點(diǎn)D作DE⊥AB于E,
根據(jù)題題意得:四邊形BCDE是矩形,
∴BE=CD=1.8m,
AE
DE
=
1.5
1.35

AE
3.6
=
1.5
1.35

解得:AE=4,
∴AB=AE+BE=4+1.8=5.8(m),
答:樹(shù)高AB為5.8m.
點(diǎn)評(píng):此題主要考查了相似三角形的應(yīng)用,根據(jù)已知列出方程,通過(guò)解方程求出樹(shù)的高度,體現(xiàn)了方程的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

三角形的兩個(gè)銳角滿足|sinA-
3
2
|+(cosB-
1
2
)2=0
,則三角形ABC的形狀是
 
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AD是圓內(nèi)接△ABC的邊BC上的高,AE是圓的直徑,AB=
2
,AC=1,則AE•AD=( 。
A、
2
B、
3
C、2
D、
2
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知矩形ABCD的邊長(zhǎng)AB=3,BC=2,正方形AEFG的邊長(zhǎng)為1,AB與AG都在直線l上,E在AD上,現(xiàn)正方形AEFG沿直線l自左向右勻速平移到正方形HMNB的位置,則在這平移過(guò)程中,正方形AEFG與矩形ABCD重疊部分的面積S與正方形AEFG平移的距離x之間函數(shù)關(guān)系的圖象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

出租車(chē)司機(jī)小李某天下午的營(yíng)運(yùn)全是在東西走向的人民大街上進(jìn)行的.如果規(guī)定向東為正,向西為負(fù),他這天下午行車(chē)?yán)锍蹋▎挝唬呵祝┤缦拢?15,-2,+5,-1,+10,+12,+4,-5.
(1)人民大街總長(zhǎng)不小于
 
千米;
(2)將最后一名乘客送往目的地時(shí),小李距離下午出車(chē)時(shí)的出發(fā)點(diǎn)多遠(yuǎn)?
(3)若出租車(chē)耗油量為每千米a升,這天下午小李共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:△ABD是等腰三角形;
(2)若∠A=40°,求∠DBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

分解因式,直接寫(xiě)出結(jié)果8a(x-a)+4b(a-x)-6c(x-a)=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把拋物線y=2x2先向左平移3個(gè)單位,再向上平移4個(gè)單位,所得拋物線的函數(shù)表達(dá)式為( 。
A、y=2(x+3)2+4
B、y=2(x+3)2-4
C、y=2(x-3)2-4
D、y=2(x-3)2+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱柱的底面是邊長(zhǎng)為2正方形,高為3,螞蟻從A到C覓食的最短路程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案