如圖所示,已知拋物線y=﹣2x2﹣4x的圖象E,將其向右平移兩個(gè)單位后得到圖象F.

(1)求圖象F所表示的拋物線的解析式:

(2)設(shè)拋物線F和x軸相交于點(diǎn)O、點(diǎn)B(點(diǎn)B位于點(diǎn)O的右側(cè)),頂點(diǎn)為點(diǎn)C,點(diǎn)A位于y軸負(fù)半軸上,且到x軸的距離等于點(diǎn)C到x軸的距離的2倍,求AB所在直線的解析式.

 

【答案】

解:(1)∵拋物線y=﹣2x2﹣4x=﹣2(x+1)2+2的圖象E,將其向右平移兩個(gè)單位后得到圖象F,

∴圖象F所表示的拋物線的解析式為y=﹣2(x+1﹣2)2+2,即y=﹣2(x﹣1)2+2。

(2)∵y=﹣2(x﹣1)2+2,∴頂點(diǎn)C的坐標(biāo)為(1,2)。

當(dāng)y=0時(shí),﹣2(x﹣1)2+2=0,解得x=0或2。

∴點(diǎn)B的坐標(biāo)為(2,0)。

設(shè)A點(diǎn)坐標(biāo)為(0,y),則y<0。

∵點(diǎn)A到x軸的距離等于點(diǎn)C到x軸的距離的2倍,∴﹣y=2×2,解得y=﹣4。

∴A點(diǎn)坐標(biāo)為(0,﹣4)。

設(shè)AB所在直線的解析式為y=kx+b,

由題意,得,解得

∴AB所在直線的解析式為y=2x﹣4。

【解析】(1)根據(jù)二次函數(shù)圖象左加右減,上加下減的平移規(guī)律進(jìn)行解答。

(2)先根據(jù)拋物線F的解析式求出頂點(diǎn)C,和x軸交點(diǎn)B的坐標(biāo),再設(shè)A點(diǎn)坐標(biāo)為(0,y),根據(jù)點(diǎn)A到x軸的距離等于點(diǎn)C到x軸的距離的2倍,列出關(guān)于y的方程,解方程求出y的值,然后利用待定系數(shù)法求出AB所在直線的解析式。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知拋物線y=x2-1與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)過點(diǎn)A作AP∥CB交拋物線于點(diǎn)P,求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在一點(diǎn)M,過M作MG⊥x軸于點(diǎn)G,使以A、M、G三點(diǎn)為頂點(diǎn)的三角形與△PCA相似?若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);否則,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知拋物線y=x2-4x+3與x軸交于A,B兩點(diǎn),C為拋物線的頂點(diǎn),過點(diǎn)A作AP∥精英家教網(wǎng)BC交拋物線于點(diǎn)P.
(1)求A,B,C三點(diǎn)坐標(biāo);
(2)求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在點(diǎn)M,過點(diǎn)M作ME⊥x軸于點(diǎn)E,使A,M,E三點(diǎn)為頂點(diǎn)的三角形與△PCA相似?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過原點(diǎn)和點(diǎn)(-2,0),則2a-3b
 
0.(>、<或=)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),拋物線的對(duì)稱軸x=2交x軸于點(diǎn)E.
(1)求交點(diǎn)A的坐標(biāo)及拋物線的函數(shù)關(guān)系式;
(2)在平面直角坐標(biāo)系xOy中是否存在點(diǎn)P,使點(diǎn)P與A,B,C三點(diǎn)構(gòu)成一個(gè)平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由;
(3)連接CB交拋物線對(duì)稱軸于點(diǎn)D,在拋物線上是否存在一點(diǎn)Q,使得直線CQ把四邊形DEOC分成面積比為1:7的兩部分?若存在,請(qǐng)求出點(diǎn)Q坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•衡陽(yáng))如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A,D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O)
(1)求此拋物線的解析式.
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R,
①求證:PF=PR;
②是否存在點(diǎn)P,使得△PFR為等邊三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案