【題目】已知:如圖,四邊形 ABCD 中,AD∥BC,∠ABC=90°,AB=BC,AE⊥BD,EF⊥CE
(1)試證明△AEF∽△BEC;
(2)如圖,過(guò) C 點(diǎn)作 CH⊥AD 于 H,試探究線段 DH 與 BF 的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若 AD=1,CD=5,試求出 BE 的值?
【答案】(1)證明見(jiàn)解析;(2)DH=BF,理由見(jiàn)解析;(3)BE=.
【解析】
(1)想辦法證明∠AEF=∠BEC,∠FAE=∠EBC即可解決問(wèn)題;
(2)結(jié)論:DH=BF.利用比例的性質(zhì)首先證明AD=AF,再證明四邊形ABCH是正方形即可解決問(wèn)題;
(3)設(shè)正方形的邊長(zhǎng)為x,在Rt△CDH中,DH=x-1,CH=x,CD=5,可得52=x2+(x-1)2,解得x=4,再通過(guò)解直角三角形求出BE的長(zhǎng)即可.
(1)證明:∵AE⊥BD,EF⊥CE,
∴∠AEB=∠FEC=90°,
∴∠AEF=∠BEC,
∵∠ABC=90°,
∴∠ABE+∠EBC=90°,∠ABE+∠FAE=90°,
∴∠FAE=∠EBC,
∴△AEF∽△BEC;
(2)解:結(jié)論:DH=BF.
理由:∵△AEF∽△BEC,
∴,
∵∠ABE=∠ABD,∠AEB=∠BAD=90°,
∴△ABE∽△DBA,
∴,
∴,∵BC=AB,
∴AF=AD,
∵∠ABC=∠BAD=∠H=90°,
∴四邊形ABCH是矩形,
∵AB=BC,
∴四邊形ABCH是正方形,
∴AB=AH,∵AF=AD,
∴BF=DH.
(3)設(shè)正方形的邊長(zhǎng)為x,
在Rt△CDH中,DH=x-1,CH=x,CD=5,
∴52=x2+(x-1)2,
解得x=4,
∴AB=4,AD=1,
在Rt△ABD中,BD=,
∵ADAB=BDAE,
∴AE=,
在Rt△AEB中,BE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年4月23日是第二十四個(gè)“世界讀書(shū)日“.某校組織讀書(shū)征文比賽活動(dòng),評(píng)選出一、二、三等獎(jiǎng)若干名,并繪成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(不完整),請(qǐng)你根據(jù)圖中信息解答下列問(wèn)題:
(1)求本次比賽獲獎(jiǎng)的總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“二等獎(jiǎng)”所對(duì)應(yīng)扇形的圓心角度數(shù);
(3)學(xué)校從甲、乙、丙、丁4位一等獎(jiǎng)獲得者中隨機(jī)抽取2人參加“世界讀書(shū)日”宣傳活動(dòng),請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法,求出恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,CD與⊙O相切,AD∥BC,連接OD,AC.
(1)求證:△ABC∽△DCA;
(2)若AC=2,BC=4,求DO的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知反比例函數(shù)(常數(shù),).
(1)若點(diǎn)在這個(gè)函數(shù)的圖象上,求的值;
(2)若在這個(gè)函數(shù)圖象的每一個(gè)分支上,隨的增大而增大,求的取值范圍;
(3)若,試判斷點(diǎn)是否在這個(gè)函數(shù)的圖象上,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】元旦放假期間,小明和小華準(zhǔn)備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國(guó)家植物園(記為D)中的一個(gè)景點(diǎn)去游玩,他們各自在這四個(gè)景點(diǎn)中任選一個(gè),每個(gè)景點(diǎn)被選中的可能性相同.
(1)求小明選擇去白鹿原游玩的概率;
(2)用樹(shù)狀圖或列表的方法求小明和小華都選擇去秦嶺國(guó)家植物園游玩的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過(guò)B點(diǎn),且頂點(diǎn)在直線y=上.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說(shuō)明理由.
(3)在(2)的條件下,若M點(diǎn)是CD所在直線下方該拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作MN平行于y軸交CD于點(diǎn)N.設(shè)點(diǎn)M的橫坐標(biāo)為t,MN的長(zhǎng)度為s,求s與t之間的函數(shù)關(guān)系式,寫(xiě)出自變量t的取值范圍,并求s取大值時(shí),點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料,完成(1)~(3)題.
數(shù)學(xué)課上,老師出示了這樣一道題:
如圖1,△ABC中,AC=BC=a,∠ACB=90°,點(diǎn)D在AB上,且AD=kAB(其中0<k<),直線CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°與直線CB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后相交于點(diǎn)E,探究線段DC、DE的數(shù)量關(guān)系,并證明.
同學(xué)們經(jīng)過(guò)思考后,交流了自己的想法:
小明:“通過(guò)觀察和度量,發(fā)現(xiàn)DC與DE相等”;
小偉:“通過(guò)構(gòu)造全等三角形,經(jīng)過(guò)進(jìn)一步推理,可以得到DC與DE相等”
小強(qiáng):“通過(guò)進(jìn)一步的推理計(jì)算,可以得到BE與BC的數(shù)量關(guān)系”
老師:“保留原題條件,連接CE交AB于點(diǎn)O.如果給出BO與DO的數(shù)量關(guān)系,那么可以求出COEO的值”
(1)在圖1中將圖補(bǔ)充完整,并證明DC=DE;
(2)直接寫(xiě)出線段BE與BC的數(shù)量關(guān)系 (用含k的代數(shù)式表示);
(3)在圖2中將圖補(bǔ)充完整,若BO=DO,求COEO的值(用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于反比例函數(shù)y=(k≠0),下列所給的四個(gè)結(jié)論中,正確的是( 。
A. 若點(diǎn)(2,4)在其圖象上,則(﹣2,4)也在其圖象上
B. 當(dāng)k>0時(shí),y隨x的增大而減小
C. 過(guò)圖象上任一點(diǎn)P作x軸、y軸的垂線,垂足分別A、B,則矩形OAPB的面積為k
D. 反比例函數(shù)的圖象關(guān)于直線y=x和y=﹣x成軸對(duì)稱
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com