【題目】2002年世界數(shù)學家大會的會標,它是用四個形狀相同、大小相等的直角三角形拼成的正方形,請通過圖形的運動,在右側網(wǎng)格中補全此會標.

1)問此正方形會標是旋轉對稱圖形嗎?答:______.

2)若會標中直角三角形的兩條直角邊長分別為,請用含(其中)的代數(shù)式表示出此正方形會標的面積.

【答案】圖見解析,(1)是(2

【解析】

通過平移,將圖E在右側網(wǎng)格中補全.

1)根據(jù)旋轉對稱圖形定義可知,此正方形會標是以對角線交點為中心的旋轉對稱圖形;

2)根據(jù)勾股定理可計算出正方形的邊長,然后利用正方形面積公式即可得.

通過平移,將圖E在右側網(wǎng)格中補全如下:

.

1)由已知條件可知,此正方形會標繞正方形對角線交點旋轉后,所得到的圖形與原圖形完全重合,故此正方形會標是旋轉對稱圖形,

答案填;

2)由題意知,在中,AB=4nBC=3n,

由勾股定理得,,

故此正方形會標的面積,

即此正方形會標的面積為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校學生會干部對校學生會倡導的牽手特殊教育自愿捐款活動進行抽樣調(diào)查,得到一組學生捐款情況的數(shù)據(jù),對學校部分捐款人數(shù)進行調(diào)查和分組統(tǒng)計后,將數(shù)據(jù)整理成如圖所示的統(tǒng)計圖(圖中信息不完整).己知AB兩組捐款人數(shù)的比為1: 5.

請結合以上信息解答下列問題.

(1)a= ,本次調(diào)查樣本的容量是 ;

(2)先求出C組的人數(shù),再補全捐款人數(shù)分組統(tǒng)計圖1”

(3)根據(jù)統(tǒng)計情況,估計該校參加捐款的4500名學生有多少人捐款在2040元之間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖在菱形ABCD中,AB=4,∠DAB=30°,點EAD的中點,點M是的一個動點(不與點A重合),連接ME并廷長交CD的延長線于點N連接MD,AN

1)求證:四邊形AMDN是平行四邊形;(2)當AM為何值時,四邊形AMDN是矩形并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,方格紙中的每個小方格都是邊長為1個單位長度的正方形,建立平面直角坐標系,△ABC的頂點均在格點上.(不寫作法)

(1)以原點O為對稱中心,畫出△ABC關于原點O對稱的△A1B1C1,并寫出B1的坐標;

(2)再把△A1B1C1繞點C1 順時針旋轉90°,得到△A2B2C1,請你畫出△A2B2C1,并寫出B2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,C是⊙O上一點,過C點的切線與AB的延長線交于點D,CEAB交⊙O于點E,連接AC、BC、AE.

(1)求證:①∠DCB=CAB;CDCE=CBCA;

(2)作CGAB于點G.若tan∠CAB=(k1),求的值(用含k的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:正方形,為平面內(nèi)任意一點,連接,將線段繞點順時針旋轉得到,當點,在一條直線時,若,,則________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校計劃開設四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學生的選修情況,學校采取隨機抽樣的方法進行問卷調(diào)查(每個被調(diào)查的學生必須選擇而且只能選擇其中一門).對調(diào)查結果進行了整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結合圖中所給信息解答下列問題:

(1)本次調(diào)查的學生共有 人,在扇形統(tǒng)計圖中,m的值是 ;

(2)將條形統(tǒng)計圖補充完整;

(3)在被調(diào)查的學生中,選修書法的有2名女同學,其余為男同學,現(xiàn)要從中隨機抽取2名同學代表學校參加某社區(qū)組織的書法活動,請直接寫出所抽取的2名同學恰好是1名男同學和1名女同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,BC,DBC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著ABA的方向運動,設E點的運動時間為t秒(0≤t<12),連接DE,當△BDE是直角三角形時,t的值為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】紀中三鑫雙語學校準備開展陽光體育活動”,決定開設足球、籃球、乒乓球、羽毛球、排球等球類活動,為了了解學生對這五項活動的喜愛情況,隨機調(diào)查了m名學生(每名學生必選且只能選擇這五項活動中的一種).

根據(jù)以上統(tǒng)計圖提供的信息,請解答下列問題

(1)m= ,n=

(2)補全上圖中的條形統(tǒng)計圖.

(3)在抽查的m名學生中,有小薇、小燕、小紅、小梅等10名學生喜歡羽毛球活動,學校打算從小薇、小燕、小紅、小梅這4名女生中,選取2名參加全市中學生女子羽毛球比賽,請用列表法或畫樹狀圖法,求同時選中小紅、小燕的概率.(解答過程中,可將小薇、小燕、小紅、小梅分別用字母A、B、C、D代表)

查看答案和解析>>

同步練習冊答案