【題目】四邊形ABCD為菱形,BD為對(duì)角線,在對(duì)角線BD上任取一點(diǎn)E,連接CE,把線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到線段CF,使得∠ECF=∠BCD ,點(diǎn)E的對(duì)應(yīng)點(diǎn)為點(diǎn)F,連接DF.
(1)如圖1,求證:BE=DF;
(2)如圖2,若DF=CF=10, ∠DFC=2∠BDC,求菱形ABCD的邊長(zhǎng).
【答案】(10證明見(jiàn)解析;(2) .
【解析】試題分析:(1)先根據(jù)∠ECF=∠BCD,可求證∠ECB=∠DCF,由旋轉(zhuǎn)可得:EC=FC,由菱形的性質(zhì)可得:BC=CD,根據(jù)SAS可證△BCE≌△DCF,所以BE=DF,(2)根據(jù)DF=CF=10,可得DF=10,CF=4,由 ∠DFC=2∠BDC,可得: ∠BEF=2∠BDC,根據(jù)三角形的性質(zhì)性質(zhì)可得:
∠BEF=∠BDC+∠ECD,所以∠BDC=∠ECD,所以BE=CE=CF=4,所以BD=14,利用相似三角形的判定可證△BCD∽△CED,根據(jù)相似三角形的性質(zhì)可得: ,然后計(jì)算可得DC.
試題解析:(1)因?yàn)椤?/span>ECF=∠BCD,
所以∠ECF-∠ECD=∠BCD-∠ECD,
所以∠ECB=∠DCF,
由旋轉(zhuǎn)可得: EC=FC,
因?yàn)榱庑?/span>ABCD,
所以BC=CD,
在△BCE和△DCF中,
,
所以△BCE≌△DCF,
所以BE=DF,
(2)因?yàn)?/span>DF=CF=10,所以DF=10,CF=4,
因?yàn)椤?/span>DFC=2∠BDC,所以 ∠BEF=2∠BDC,
又因?yàn)椤?/span>BEF=∠BDC+∠ECD,
所以∠BDC=∠ECD,
所以BE=CE=CF=4,所以BD=14,
因?yàn)?/span>△BCD和△CED是等腰三角形,且∠BDC是公共角
所以△BCD∽△CED,所以,即,解得CD=,
所以菱形的邊長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】快、慢兩車(chē)分別從相距180千米的甲、乙兩地同時(shí)出發(fā),沿同一路線勻速行駛,相向而行,快車(chē)到達(dá)乙地停留一段時(shí)間后,按原路原速返回甲地.慢車(chē)到達(dá)甲地比快車(chē)到達(dá)甲地早小時(shí),慢車(chē)速度是快車(chē)速度的一半,快、慢兩車(chē)到達(dá)甲地后停止行駛,兩車(chē)距各自出發(fā)地的路程y(千米)與所用時(shí)間x(小時(shí))的函數(shù)圖象如圖所示,請(qǐng)結(jié)合圖象信息解答下列問(wèn)題:
(1)請(qǐng)直接寫(xiě)出快、慢兩車(chē)的速度;
(2)求快車(chē)返回過(guò)程中y(千米)與x(小時(shí))的函數(shù)關(guān)系式;
(3)兩車(chē)出發(fā)后經(jīng)過(guò)多長(zhǎng)時(shí)間相距90千米的路程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列選項(xiàng)中的整式,次數(shù)是5的是( 。
A.5xB.x5+x3y3C.x5y2D.x4+x2y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為的正方形中,點(diǎn)在上從向運(yùn)動(dòng),連接交于點(diǎn).
()試證明:無(wú)論點(diǎn)運(yùn)動(dòng)到上何處時(shí),都有≌.
()若點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn),再繼續(xù)在上運(yùn)動(dòng)到點(diǎn),在整個(gè)運(yùn)動(dòng)過(guò)程中,點(diǎn)以每秒單位長(zhǎng)度的速度勻速運(yùn)動(dòng),當(dāng)恰為等腰三角形,求點(diǎn)運(yùn)動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在⊙O中,弦AC⊥弦BD,垂足為H,連接BC,過(guò)點(diǎn)D作DE⊥BC于點(diǎn)E,DE交AC于點(diǎn)F.
(1)如圖1,求證:BD平分∠ADF;
(2)如圖2,連接OC,若OC平分∠ACB,求證:AC=BC;
(3)如圖3,在(2)的條件下,連接AB,過(guò)點(diǎn)D作DN∥AC交⊙O于點(diǎn)N,若tan∠ADB=,AB=3,求DN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:如圖,∥,,,求的度數(shù).
小明的思路是過(guò)點(diǎn)作∥,通過(guò)平行線的性質(zhì)來(lái)求.
(1)按照小明的思路,求的度數(shù);
(2)問(wèn)題遷移:如圖,∥,點(diǎn)在射線上運(yùn)動(dòng),記,,當(dāng)點(diǎn)在、兩點(diǎn)之間運(yùn)動(dòng)時(shí),問(wèn)與、之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,如果點(diǎn)不在、兩點(diǎn)之間運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)不重合),請(qǐng)直接寫(xiě)出與、之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè), ,……, ,(n為正整數(shù))
(1)試說(shuō)明是8的倍數(shù);
(2)若△ABC的三條邊長(zhǎng)分別為、、(為正整數(shù))
①求的取值范圍.
②是否存在這樣的,使得△ABC的周長(zhǎng)為一個(gè)完全平方數(shù),若存在,試舉出一例,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2,∠C=∠D,那么DF∥AC,請(qǐng)完成它成立的理由
∵∠1=∠2 ( )
∠2=∠3 ,∠1=∠4( )
∴∠3=∠4( )
∴_______∥_______ ( )
∴∠C=∠ABD( )
∵∠C=∠D( )
∴∠D=∠ABD( )
∴DF∥AC( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com