【題目】如圖,中,,,平分,且,與相交于點,邊的中點,連接相交于點,下列結(jié)論正確的有( )

;②;③;④是等腰三角形;⑤.

A.B.C.D.

【答案】B

【解析】

只要證明△BDF≌△CDA,△BAC是等腰三角形,∠DGF=∠DFG67.5°,即可判斷①②③④正確,作GMBDM,只要證明GHDG即可判斷⑤錯誤.

CDAB,BEAC

∴∠BDC=∠ADC=∠AEB90°,

∴∠A+∠ABE90°,∠ABE+∠DFB90°,

∴∠A=∠DFB,

∵∠ABC45°,∠BDC90°,

∴∠DCB90°45°=45°=∠DBC

BDDC,

在△BDF和△CDA

∴△BDF≌△CDAAAS),

BFAC,故①正確.

∵∠ABE=∠EBC22.5°,BEAC,

∴∠A=∠BCA67.5°,故③正確,

BABC,

BEAC,

AEECACBF,故②正確,

BE平分∠ABC,∠ABC45°,

∴∠ABE=∠CBE22.5°,

∵∠BDF=∠BHG90°,

∴∠BGH=∠BFD67.5°,

∴∠DGF=∠DFG67.5°,

DGDF,故④正確.

GMABM

∵∠GBM=∠GBH,GHBC

GHGMDG

SDGBSGHB,

SABESBCE

S四邊形ADGES四邊形GHCE.故⑤錯誤,

∴①②③④正確,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是201812月份的日歷,我們選擇其中的方框部分,將每個方框部分中4個位置上的數(shù)交叉求平方和,再相減,例如:(32+112)-(42+102)=14,(212+292)-(222+282)=14,不難發(fā)現(xiàn)結(jié)果都是14.

(1)今天是1212日,請你寫一個含今天日期在內(nèi)的類似部分的算式;

(2)請你利用整式的運算對以上規(guī)律加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點Bab)是第一象限內(nèi)一點,且ab滿足等式a2-6a+9+|b-1|=0

1)求點B的坐標(biāo);

2)如圖,動點C以每秒1個單位長度的速度從O點出發(fā),沿x軸的正半軸方向運動,同時動點A以每秒2個單位長度的速度從O點出發(fā),沿y軸的正半軸方向運動,設(shè)運動的時間為t秒,當(dāng)t為何值時,ABCAB為斜邊的等腰直角三角形;

3)如圖,在(2)的條件下,作∠ABC的平分線BD,設(shè)BD的長為m,ADB的面積為S.請用含m的式子表示S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列的網(wǎng)格圖中.每個小正方形的邊長均為1個單位,在RtABC中,∠C=90°,AC=3,BC=4.

(1)試在圖中作出ABCA為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形AB1C1

(2)若點B的坐標(biāo)為(-3,5),試在圖中畫出直角坐標(biāo)系,并標(biāo)出A、C兩點的坐標(biāo);

(3)根據(jù)(2)中的坐標(biāo)系作出與ABC關(guān)于原點對稱的圖形A2B2C2,并標(biāo)出B2、C2兩點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(),在四邊形中,,,,分別是,上的點,且.探究圖中線段,,之間的數(shù)量關(guān)系.小王同學(xué)探究此問題的方法是,延長到點,使,連接,先證明,再證明,可得出結(jié)論,他的結(jié)論應(yīng)該是__________

如圖(),若在四邊形中,,,,分別是,上的點,且,上述結(jié)論是否仍然成立,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:①1=12;2+3+4=323+4+5+6+7=52;4+5+6+7+8+9+10=72;…請根據(jù)上述規(guī)律判斷下列等式正確的是( 。

A. 1008+1009+…+3025=20162 B. 1009+1010+…+3026=20172

C. 1009+1010+…+3025=20172 D. 1010+1011+…+3029=20192

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的平分線與的垂直平分線相交于點,,,垂足分別為、,,則的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在ABC中,BE、CF分別是ACAB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG

1)求證:AD=AG;

2ADAG的位置關(guān)系如何,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,BC,D在同一直線上,∠M=∠N,AMBN,請你添加一個條件,使得△ACM≌△BDN,并給出證明.

1)你添加的條件是:_____

2)證明:

查看答案和解析>>

同步練習(xí)冊答案