【題目】定義:經(jīng)過三角形一邊中點(diǎn),且平分三角形周長的直線叫做這個(gè)三角形在該邊上的中分線,其中落在三角形內(nèi)部的部分叫做中分線段.
(1)如圖,△ABC中,AC>AB,DE是△ABC在BC邊上的中分線段,F為AC中點(diǎn),過點(diǎn)B作DE的垂線交AC于點(diǎn)G,垂足為H,設(shè)AC=b,AB=c.
①求證:DF=EF;
②若b=6,c=4,求CG的長度;
(2)若題(1)中,S△BDH=S△EGH,求的值.
【答案】(1)①詳見解析;②2;(2)
【解析】
(1)①由題意得出DF是△CAB的中位線,得出DF=AB=c,AF=AC=b,CE=(b+c),AE=(b﹣c),求出EF=AF﹣AE=c,即可得出結(jié)論;
②過點(diǎn)A作AP⊥BG于P,由中位線定理得出DF∥AB,得出∠DFC=∠BAC,求出∠DEF=∠EDF,∠BAP+∠PAC=2∠DEF,由ED⊥BG,AP⊥BG,得出DE∥AP,得出∠PAC=∠DEF,∠BAP=∠DEF=∠PAC,再由AP⊥BG,得出AB=AG=4,即可得出結(jié)果;
(2)連接BE、DG,由S△BDH=S△EGH,得出S△BDG=S△DEG,推出BE∥DG,再由DF∥AB,得出△ABE∽△FDG,得出,推出FG=(b﹣c),CF=b=FG+CG=(b﹣c)+(b﹣c),即可得出結(jié)果.
(1)①證明:∵F為AC中點(diǎn),DE是△ABC在BC邊上的中分線段,
∴DF是△CAB的中位線,
∴DF=AB=c,AF=AC=b,CE=(b+c),
∴AE=b﹣CE=b﹣(b+c)=(b﹣c),
∴EF=AF﹣AE=b﹣(b﹣c)=c,
∴DF=EF;
②解:過點(diǎn)A作AP⊥BG于P,如圖1所示:
∵DF是△CAB的中位線,
∴DF∥AB,
∴∠DFC=∠BAC,
∵∠DFC=∠DEF+∠EDF,EF=DF,
∴∠DEF=∠EDF,
∴∠BAP+∠PAC=2∠DEF,
∵ED⊥BG,AP⊥BG,
∴DE∥AP,
∴∠PAC=∠DEF,
∴∠BAP=∠DEF=∠PAC,
∵AP⊥BG,
∴AB=AG=4,
∴CG=AC﹣AG=6﹣4=2;
(2)解:連接BE、DG,如圖2所示:
∵S△BDH=S△EGH,
∴S△BDG=S△DEG,
∴BE∥DG,
∵DF∥AB,
∴△ABE∽△FDG,
∴,
∴FG=AE=×(b﹣c)=(b﹣c),
∵AB=AG=c,
∴CG=b﹣c,
∴CF=b=FG+CG=(b﹣c)+(b﹣c),
∴3b=5c,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=4cm,點(diǎn)M為邊BC的中點(diǎn),點(diǎn)N為邊AB上的任意一點(diǎn)(不與點(diǎn)A,B重合).若點(diǎn)B關(guān)于直線MN的對稱點(diǎn)B'恰好落在等邊△ABC的邊上,則BN的長為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題引入)
如圖(1),在中,,,過作則交延長線于點(diǎn),則易得
(直接應(yīng)用)
如圖,已知等邊的邊長為,點(diǎn), 分別在邊, 上, , 為中點(diǎn),為當(dāng)上一動(dòng)點(diǎn),當(dāng)在何處時(shí),與相似,求的值.
(拓展應(yīng)用)
已知在平行四邊形中,,,,,,求長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,AB=4,過圓心O的直線垂直AB于點(diǎn)D,交⊙O于點(diǎn)C和點(diǎn)E,連接AC、BC、OB,cos∠ACB=,延長OE到點(diǎn)F,使EF=2OE.
(1)求⊙O的半徑;
(2)求證:BF是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個(gè)三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個(gè)數(shù)均為其上方左、右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個(gè)數(shù)1,2,1,恰好對應(yīng)(a+b)2=a2+2ab+b2展開式中的系數(shù);第四行的四個(gè)數(shù)1,3,3,1,恰好對應(yīng)著(a+b)3=a3+3a2b+3ab2+b2展開式中的系數(shù)等.
(1)(a+b)n展開式中項(xiàng)數(shù)共有 項(xiàng).
(2)寫出(a+b)5的展開式:(a+b)5= .
(3)利用上面的規(guī)律計(jì)算:25﹣5×24+10×23﹣10×22+5×2﹣1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x=﹣m和x=m﹣2時(shí),多項(xiàng)式ax2+bx+4a+1的值都相等,且m≠1,若當(dāng)1<x<2時(shí),存在x的值,使多項(xiàng)式ax2+bx+4a+1的值為3,則a的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=2x2+bx﹣1(b為常數(shù)).
(1)若拋物線經(jīng)過點(diǎn)(1,2b),求b的值;
(2)求證:無論b取何值,二次函數(shù)y=2x2+bx﹣1圖象與x軸必有兩個(gè)交點(diǎn);
(3)若平行于x軸的直線與該二次函數(shù)的圖象交于點(diǎn)A,B,且點(diǎn)A,B的橫坐標(biāo)之和大于1,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD,點(diǎn)M從點(diǎn)A出發(fā)以每秒1個(gè)單位長度的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)N從點(diǎn)A出發(fā)以每秒3個(gè)單位長度的速度沿A→D→C→B的路徑向點(diǎn)B運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)點(diǎn)B時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)△AMN的面積為s,運(yùn)動(dòng)時(shí)間為t秒,則能大致反映s與t的函數(shù)關(guān)系的圖象是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com