【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A0,b),點(diǎn)Ba,0),點(diǎn)D(-2,0),其中ab滿足, DEx軸,且∠BED=∠ABO,直線AEx軸于點(diǎn)C.

⑴ 分別求出點(diǎn)AB的坐標(biāo);

⑵ 求證:△AOB≌△BDE,并求出點(diǎn)E的坐標(biāo)

⑶ 若以AB為腰在第一象限內(nèi)構(gòu)造等腰直角△ABF,直接寫出點(diǎn)F的坐標(biāo).

【答案】⑴ 點(diǎn)A0,3);點(diǎn)B1,0);⑵見解析,E(-21);⑶(3,4)或(4,1

【解析】

1)根據(jù)算術(shù)平方根的非負(fù)性和絕對值的非負(fù)性,即可求出a、b,從而求出點(diǎn)A、B的坐標(biāo);

(2)根據(jù)點(diǎn)A的坐標(biāo)為(03),點(diǎn)B的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(-2,0),即可求出OAOB、OD的長,從而證出OA= DB,再利用AAS即可證出:△AOB≌△BDE,從而得到OB=DE=1,最后即可求出E點(diǎn)坐標(biāo);

3)根據(jù)等腰直角三角形腰的情況分類討論:①若AB=AF,且∠BAF=90°時(shí),過點(diǎn)FFGy軸于G,利用AAS證出△AOB≌△FGA,從而得到OB=GA=1,AO=FG=3,即可求出GO,從而求出F點(diǎn)坐標(biāo);②若AB=BF,且∠ABF=90°時(shí),過點(diǎn)FFGx軸于G,原理同上.

解:(1)∵

解得:

∴點(diǎn)A的坐標(biāo)為(03),點(diǎn)B的坐標(biāo)為(1,0);

2) ∵點(diǎn)A的坐標(biāo)為(0,3),點(diǎn)B的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(-2,0

OA=3,OB=1,OD=2

DB= OD+ OB=3

OA= DB

在△AOB和△BDE

∴△AOB≌△BDE

OB=DE=1

E點(diǎn)在第二象限

∴點(diǎn)E坐標(biāo)為(-2,1

3) ①若AB=AF,且∠BAF=90°時(shí),過點(diǎn)FFGy軸于G,如下圖所示

∴∠GAF+∠OAB=90°,∠GAF+∠GFA =90°

∴∠OAB=GFA

在△AOB和△FGA

∴△AOB≌△FGA

OB=GA=1,AO=FG=3

GO= GA+ AO=4

此時(shí)點(diǎn)F的坐標(biāo)為:(3,4);

②若AB=BF,且∠ABF=90°時(shí),過點(diǎn)FFGx軸于G

同理可證:△AOB≌△BGF

OB=GF=1,AO=BG=3

OG=OB+BG=4

此時(shí)點(diǎn)F的坐標(biāo)為:(4,1

綜上所述:點(diǎn)F的坐標(biāo)為(3,4)或(4,1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A、B、C、D四點(diǎn)的坐標(biāo)依次為(0,0)、(6,0)(8,6)、(2,6),若一次函數(shù)y=mx﹣6m的圖象將四邊形ABCD的面積分成1:3兩部分,則m的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O外一點(diǎn),AC,BC分別與⊙O相交于D.

(1)在圖中作出ABC的邊AB上的高CH.(要求:①僅用無刻度真尺,且不能用直尺中的直角;②保留必要的作圖痕跡)

(2)連接DE,若,則∠C的度數(shù)是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A0,12),B(-50),連接AB.將△AOB沿過點(diǎn)B的直線折疊,使點(diǎn)A落在x軸上的點(diǎn)處,折痕所在的直線交y軸正半軸于點(diǎn)C,則點(diǎn)C的坐標(biāo)為___________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A1,1)、B3,5),要在坐標(biāo)軸上找一點(diǎn),使得△PAB的周長最小,則點(diǎn)的坐標(biāo)為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論:①若三角形一邊上的中線和這邊上的高重合,則這個(gè)三角形是等腰三角形;②三邊分別為的三角形是直角三角形;③大于-而小于的所有整數(shù)的和為-4 ;④若一個(gè)直角三角形的兩邊長分別為34,則第三邊長是5;其中正確的結(jié)論是______________(填序號);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架梯子AB長13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個(gè)梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了5米,那么梯子的底端在水平方向滑動了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的三個(gè)頂點(diǎn)在邊長為1的正方形網(wǎng)格中,已知,.

(1)畫出關(guān)于軸對稱的(其中,分別是,,的對應(yīng)點(diǎn),不寫畫法)

(2)分別寫出,三點(diǎn)的坐標(biāo).

(3)請寫出所有以為邊且與全等的三角形的第三個(gè)頂點(diǎn)(不與重合)的坐標(biāo)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(22),若點(diǎn)Px軸上,且△APO是直角三角形,則點(diǎn)P的坐標(biāo)是 ________

查看答案和解析>>

同步練習(xí)冊答案