【題目】如圖所示,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),可以得到△DEC.若點(diǎn)D剛好落在AB邊上,取DE邊的中點(diǎn)F,連接FC,試判斷四邊形ACFD的形狀,并說(shuō)明理由.
【答案】見(jiàn)解析.
【解析】
由在Rt△ABC 中,∠ACB=90°,∠B=30°,易得△ACD是等邊三角形,則可得AC=AD=AB,又由旋轉(zhuǎn)的性質(zhì)與直角三角形斜邊的中線(xiàn)的性質(zhì),證得DF=CF=DE,則可得AC=CF=DF=AD,繼而證得四邊形ACFD是菱形.
解:四邊形ACFD是菱形.
理由如下:
∵在Rt△ABC中,∠ACB=90°,∠B=30°,
∴∠A=90°-∠B=60°,AC=AB.
∵將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),得到△DEC,
∴CA=CD,AB=DE,∠ACB=∠DCE=90°,
∴△ACD是等邊三角形,∴AC=AD.
∵F是DE的中點(diǎn),∴DF=CF=DE.
∴AC=CF=DF=AD,
∴四邊形ACFD是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從邊長(zhǎng)為a的大正方形紙板中挖去一個(gè)邊長(zhǎng)為b的小正方形后,將其裁成四個(gè)相同的等腰梯形(如圖1),然后拼成一個(gè)平行四邊形(如圖2)。那么通過(guò)計(jì)算兩個(gè)圖形的陰影部分的面積,可以驗(yàn)證成立的公式是( )
A.a2-b2=(a-b)2 | B.(a+b)2="a+2ab+b" |
C.(a-b)2=a2-2ab+b2 | D.a2-b2=(a-b)(a+b) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為打贏“脫貧攻堅(jiān)”戰(zhàn),某地黨委、政府聯(lián)合某企業(yè)帶領(lǐng)農(nóng)戶(hù)脫貧致富,該企業(yè)給某低收入戶(hù)發(fā)放如圖①所示的長(zhǎng)方形和正方形紙板,供其加工做成如圖②所示的A,B兩款長(zhǎng)方體包裝盒(其中A款包裝盒無(wú)蓋,B款包裝盒有蓋).請(qǐng)你幫這戶(hù)人家計(jì)算他家領(lǐng)取的360張長(zhǎng)方形紙板和140張正方形紙板,做成A,B型盒子分別多少個(gè)能使紙板剛好全部用完?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3).
(1)求點(diǎn)C到x軸的距離;
(2)分別求△ABC的三邊長(zhǎng);
(3)點(diǎn)P在y軸上,當(dāng)△ABP的面積為6時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線(xiàn)y=-x2+2x的頂點(diǎn)為A點(diǎn),且與x軸的正半軸交于點(diǎn)B,P點(diǎn)為該拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),則OP+AP的最小值為( ).
A. 3 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△OBC中,邊BC的垂直平分線(xiàn)交∠BOC的平分線(xiàn)于點(diǎn)D,連接DB,DC,過(guò)點(diǎn)D作DF⊥OC于點(diǎn)F.
(1)若∠BOC=60°,求∠BDC的度數(shù);
(2)若∠BOC=,則∠BDC= ;(直接寫(xiě)出結(jié)果)
(3)直接寫(xiě)出OB,OC,OF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線(xiàn)AB與軸交于點(diǎn)A、與軸交于點(diǎn)B,且∠ABO=45°,A(-6,0),直線(xiàn)BC與直線(xiàn)AB關(guān)于軸對(duì)稱(chēng).
(1)求△ABC的面積;
(2)如圖2,D為OA延長(zhǎng)線(xiàn)上一動(dòng)點(diǎn),以BD為直角邊,D為直角頂點(diǎn),作等腰直角△BDE,求證:AB⊥AE;
(3)如圖3,點(diǎn)E是軸正半軸上一點(diǎn),且∠OAE=30°,AF平分∠OAE,點(diǎn)M是射線(xiàn)AF上一動(dòng)點(diǎn),點(diǎn)N是線(xiàn)段AO上一動(dòng)點(diǎn),判斷是否存在這樣的點(diǎn)M,N,使OM+NM的值最?若存在,請(qǐng)寫(xiě)出其最小值,并加以說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在扇形OAB中,∠AOB=110°,半徑OA=18,將扇形OAB沿過(guò)點(diǎn)B的直線(xiàn)折疊,點(diǎn)O恰好落在弧AB上的點(diǎn)D處,折痕交OA于點(diǎn)C,則弧AD的長(zhǎng)為( )
A. 2π B. 3π C. 4π D. 5π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(3,0),B(0,﹣1),連接AB,過(guò)點(diǎn)B的垂線(xiàn)BC,使BC=BA,則點(diǎn)C坐標(biāo)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com