設(shè)am+1,bm+2,cm+3,求代數(shù)式a2+2abb2-2ac-2bcc2的值.

m2

解析a2+2abb2-2ac-2bcc2

再將am+1,bm+2,cm+3,代入得值為m2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:標(biāo)準(zhǔn)大考卷·初中數(shù)學(xué)AB卷 九年級(上冊) (課標(biāo)華東師大版) (第3版) 課標(biāo)華東師大版 第3版 題型:059

(1)填空:

①方程x2+2x+1=0的根為x1=________,x2=________,x1+x2=________,x1·x2=________;

②方程x2-3x-1=0的根為x1=________,x2=________,x1+x2=________,x1·x2=________;

③方程3x2+4x-7=0的根為x1=________,x2=________,x1+x2=________,x1·x2=________;

④方程x2+x+1=0的實數(shù)根存在嗎?答:________.

(2)猜想并驗證:

由①、②、③、④,對于一元二次方程ax2+bx+c=0,你能得出什么結(jié)論?試說明這個結(jié)論的正確性.

(3)應(yīng)用結(jié)論解決問題:

已知關(guān)于x的方程x2-2(m-2)x+m2=0,若設(shè)它的兩根為x1、x2,且=56,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省泰州市高級中等學(xué)校招生考試數(shù)學(xué) 題型:044

如圖,矩形ABCD中,點P在邊CD上,且與點C、D不重合,過點A作AP的垂線與CB的延長線相交于點Q,連接PQ,PQ的中點為M.

(1)求證:△ADP∽△ABQ;

(2)若AD=10,AB=20,點P在邊CD上運(yùn)動,設(shè)DP=x,BM 2y,求y與x的函數(shù)關(guān)系式,并求線段BM長的最小值;

(3)若AD=10,AB=a,DP=8,隨著a的大小的變化,點M的位置也在變化,當(dāng)點M落在矩形ABCD外部時,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(9分)如圖,在半徑為r的半圓⊙O中,半徑OA⊥直徑BC,點E、F分別在弦AB、AC上滑動并保持AE=CF,但點F不與A、C重合,點E不與A、B重合.

1.(1)求證  S四邊形AEOF;

2.(2)設(shè)AE=x,S△OEF=y(tǒng),寫出y與x之間的函數(shù)關(guān)系式及自變量x的范圍;

3.(3)當(dāng)S△OEF =S△ABC時,求點E、F分別在AB、AC上的位置及EF的長。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年南京市溧水縣中考數(shù)學(xué)一模試卷 題型:解答題

【改編】(本小題滿分8分)
“6”字形圖中,F(xiàn)M是大⊙O的直徑,BC與大⊙O相切于B,OB與小⊙O相交于點A,AD∥BC,CD∥BH∥FM,DH⊥BH于H,設(shè)∠FOB=α,OB=4,BC=6.
(1)求證:AD為小⊙O的切線;

 

 
(2)在圖中找出一個可用α表示的角,并說明你這樣表示的理由;(根據(jù)所寫結(jié)果的正確性及所需推理過程的難易程度得分略有差異)

(3)當(dāng)α=30º時,求DH的長。(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,AB=5,BC=10,FAD的中點,CEABE,設(shè)∠ABCα(60°≤α<90°).

(1)當(dāng)α=60°時,求CE的長;

(2)當(dāng)60°<α<90°時,

①是否存在正整數(shù)k,使得∠EFDkAEF?若存在,求出k的值;若不存在,請說明理由.

②連接CF,當(dāng)CE2CF2取最大值時,求tan∠DCF的值.

分析 (1)利用60°角的正弦值列式計算即可得解;

(2)①連接CF并延長交BA的延長線于點G,利用“角邊角”證明△AFG和△CFD全等,根據(jù)全等三角形對應(yīng)邊相等可得CFGF,AGCD,再利用直角三角形斜邊上的中線等于斜邊的一半可得EFGF,再根據(jù)AB、BC的長度可得AGAF,然后利用等邊對等角的性質(zhì)可得∠AEF=∠G=∠AFG,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,從而得解;

②設(shè)BEx,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的長度,在Rt△CEG中,利用勾股定理表示出CG2,從而得到CF2,然后相減并整理,再根據(jù)二次函數(shù)的最值問題解答.

查看答案和解析>>

同步練習(xí)冊答案