【題目】下圖是江津區(qū)某一天的氣溫隨時(shí)間變化的圖象,根據(jù)圖象回答:在這一天中:
(1)氣溫T(℃)是不是時(shí)間t(時(shí))的函數(shù)。
(2)12時(shí)的氣溫是多少?
(3)什么時(shí)候氣溫最高,最高時(shí)多少?什么時(shí)候氣溫最低,最低時(shí)多少?
(4)什么時(shí)候氣溫是氣溫是4℃
【答案】(1)是;(2)8℃;(3)16時(shí)氣溫最高,為10℃;2時(shí)氣溫最低,為-2℃;(4)9時(shí)和22時(shí),氣溫是氣溫是4℃.
【解析】
試題分析:根據(jù)函數(shù)的圖象的橫坐標(biāo)表示時(shí)間,縱坐標(biāo)表示氣溫,可得氣溫的相應(yīng)時(shí)間,可得答案.
試題解析:(1)氣溫T(℃)是時(shí)間t(時(shí))的函數(shù)。
(2)12時(shí)的氣溫是8℃;
(3)16時(shí)氣溫最高,為10℃;2時(shí)氣溫最低,為-2℃;
(4)9時(shí)和22時(shí),氣溫是氣溫是4℃.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列問(wèn)題用到推理的是( )
A. 根據(jù)x=1,y=1,得x=y(tǒng)
B. 觀察得到的四邊形有四個(gè)內(nèi)角
C. 老師告訴了我們關(guān)于金字塔的許多奧秘
D. 由公理知道過(guò)兩點(diǎn)有且只有一條直線
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)某一個(gè)函數(shù)給出如下定義:若存在實(shí)數(shù)M>0,對(duì)于任意的函數(shù)值y,都滿足﹣M≤y≤M,則稱這個(gè)函數(shù)是有界函數(shù),在所有滿足條件的M中,其最小值稱為這個(gè)函數(shù)的邊界值.例如,如圖中的函數(shù)是有界函數(shù),其邊界值是1.
(1)分別判斷函數(shù) y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函數(shù)?若是有界函數(shù),求其邊界值;
(2)若函數(shù)y=﹣x+1(a≤x≤b,b>a)的邊界值是2,且這個(gè)函數(shù)的最大值也是2,求b的取值范圍;
(3)將函數(shù) y=x2(﹣1≤x≤m,m≥0)的圖象向下平移m個(gè)單位,得到的函數(shù)的邊界值是t,當(dāng)m在什么范圍時(shí),滿足≤t≤1?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,馬路邊安裝的路燈由支柱上端的鋼管ABCD支撐,AB=25cm,CG⊥AF,FD⊥AF,點(diǎn)G、點(diǎn)F分別是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,請(qǐng)計(jì)算鋼管ABCD的長(zhǎng)度.(鋼管的直徑忽略不計(jì),結(jié)果精確到1cm.參考數(shù)據(jù):sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)M(﹣2,3)在( 。
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OABC是平行四邊形,對(duì)角線OB在y軸正半軸上,位于第一象限的點(diǎn)A和第二象限的點(diǎn)C分別在雙曲線和的一支上,分別過(guò)點(diǎn)A、C作x軸的垂線,垂足分別為M和N,則有以下的結(jié)論:
①;②陰影部分面積是(k1+k2);③當(dāng)∠AOC=90°時(shí),|k1|=|k2|;④若OABC是菱形,則兩雙曲線既關(guān)于x軸對(duì)稱,也關(guān)于y軸對(duì)稱.其中正確的結(jié)論是( )
A.①②③ B.②④ C.①③④ D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)若CE=12,CF=5,求OC的長(zhǎng);
(2)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)時(shí),四邊形BCFE會(huì)是菱形嗎?若是,請(qǐng)證明;若不是,則說(shuō)明理由;
(3)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處,且△ABC滿足什么條件時(shí),四邊形AECF是正方形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題11分)
A、B兩地相距600千米,一列慢車從A地開(kāi)出,每小時(shí)行駛80千米,一列快車從B地開(kāi)出,每小時(shí)行駛120千米,兩車同時(shí)開(kāi)出.
(1)若相向而行,出發(fā)后多少小時(shí)相遇?
(2)若相背而行,多少小時(shí)后,兩車相距800千米?
(3)若兩車同向而行,快車在慢車后面,多少小時(shí)后,快車追上慢車?
(4)若兩車同向而行,慢車在快車后面,多少小時(shí)后,兩車相距760千米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com