【題目】如果線段AB=5cm,BC=4cm,且A,B,C,D,在同一條直線上,那么A,C兩點的距離是( )
A.1cm
B.9cm
C.1cm或9cm
D.以上答案都不正確

【答案】C
【解析】解:如圖2所示:

當(dāng)點C在AB之間時,AC=AB﹣BC=5﹣4=1(cm);

當(dāng)點C在點B的右側(cè)時,AC=AB+BC=5+4=9(cm).

所以答案是:C.


【考點精析】根據(jù)題目的已知條件,利用有理數(shù)的加法法則和有理數(shù)的減法的相關(guān)知識可以得到問題的答案,需要掌握有理數(shù)加法法則:1、同號兩數(shù)相加,取相同的符號,并把絕對值相加2、異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值3、一個數(shù)與0相加,仍得這個數(shù);有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2x+2x軸交于A、B兩點,與y軸交于點C

1)求點A,BC的坐標(biāo);

2)點E是此拋物線上的點,點F是其對稱軸上的點,求以A,BE,F為頂點的平行四邊形的面積;

3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以直角三角形a、b、c為邊,向外作等邊三角形,半圓,等腰直角三角形和正方形,上述四種情況的面積關(guān)系滿足S1+S2=S3圖形個數(shù)有(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,APB中,AB=2,APB=90°,在AB的同側(cè)作正ABD、正APE和正BPC,則四邊形PCDE面積的最大值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是等邊三角形,點D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF,CF,連接BE并延長交CF于點G.下列結(jié)論:

①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2﹣4x+2=0的根的情況是(
A.有兩個不相等的實數(shù)根
B.有兩個相等的實數(shù)根
C.只有一個實數(shù)根
D.沒有實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市對教師試卷講評課中學(xué)生參與的深度和廣度進(jìn)行評價,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機(jī)抽取了若干名初中生的參與情況,繪制了如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中所給的信息解答下列問題:

(1)這次評價中,一共抽查了名學(xué)生;
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)如果全市有16萬初中學(xué)生,那么在試卷講評課中,“獨立思考”的學(xué)生約有多少萬人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,點O是AB中點,連接OH,則OH=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC與Rt△DEF的位置如圖所示,其中AC=2,BC=6,DE=3,∠D=30°,其中,Rt△DEF沿射線CB以每秒1個單位長度的速度向右運(yùn)動,射線DE、DF與射線AB分別交于N、M兩點,運(yùn)動時間為t,當(dāng)點E運(yùn)動到與點B重合時停止運(yùn)動.

(1)當(dāng)Rt△DEF在起始時,求∠AMF的度數(shù);

(2)設(shè)BC的中點的為P,當(dāng)△PBM為等腰三角形時,求t的值;

(3)若兩個三角形重疊部分的面積為S,寫出S與t的函數(shù)關(guān)系式和相應(yīng)的自變量的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案