【題目】設(shè)函數(shù)y=kx2+(3k+2)x+1,對于任意負(fù)實(shí)數(shù)k,當(dāng)x<m時,y隨x的增大而增大,則m的最大整數(shù)值為( 。
A. 2 B. ﹣2 C. ﹣1 D. 0
【答案】B
【解析】
先根據(jù)函數(shù)的解析式,再由對于任意負(fù)實(shí)數(shù)k,當(dāng)x<m時,y隨x的增大而增大可知-≥m,故可得出m的取值范圍,進(jìn)而得出m的最大整數(shù)值.
∵對于任意負(fù)實(shí)數(shù)k,當(dāng)x<m時,y隨x的增大而增大,
∵k為負(fù)數(shù),即k<0,
∴函數(shù)y=kx2+(3k+2)x+1表示的是開口向下的二次函數(shù),
∴在對稱軸的左側(cè),y隨x的增大而增大,
∵對于任意負(fù)實(shí)數(shù)k,當(dāng)x<m時,y隨x的增大而增大,
∴x=-=-,
∴m≤-=.
∵k<0,
∴->0
∴>,
∵m≤對一切k<0均成立,
∴m≤,
∴m的最大整數(shù)值是m=-2.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,為的中點(diǎn),連接,且平分,延長交的延長線于點(diǎn).
(1)求證:;
(2)求證:;
(3)求證:是的平分線;
(4)探究和的面積間的數(shù)量關(guān)系,并寫出探究過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了參加“荊州市中小學(xué)生首屆詩詞大會”,某校八年級的兩班學(xué)生進(jìn)行了預(yù)選,其中班上前5名學(xué)生的成績(百分制)分別為:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通過數(shù)據(jù)分析,列表如下:
班級 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
八(1) | 85 | b | c | 22.8 |
八(2) | a | 85 | 85 | 19.2 |
(1)直接寫出表中a,b,c的值;
(2)根據(jù)以上數(shù)據(jù)分析,你認(rèn)為哪個班前5名同學(xué)的成績較好?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)開展4種課外興趣小組活動,分別為A;繪畫:B;機(jī)器人:C;跳舞:D;吉他.每個學(xué)生都要選取一個興趣小組參與活動,小明對同學(xué)們選取的活動形式進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了如下的統(tǒng)計(jì)圖:
(1)本次調(diào)查學(xué)生共 人,a= ,并將條形圖補(bǔ)充完整;
(2)如果該校有學(xué)生500人,則選擇“機(jī)器人”活動的學(xué)生估計(jì)有多少人?
(3)學(xué)校讓每班同學(xué)在A,B,C,D四種活動形式中,隨機(jī)抽取兩種開展活動,請用樹狀圖或列表法的方法,求每班抽取的兩種形式恰好是“繪畫”和“機(jī)器人”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種成本為每千克元的水產(chǎn)品,據(jù)市場分析,若按每千克元銷售,一個月能售出,銷售單價每漲(或跌)元,月銷售量就減少(或增加),解答以下問題:
(1)當(dāng)銷售單價定位每千克元時,計(jì)算月銷售量和月銷售利潤;
(2)商店想在月銷售成本不超過元的情況下,使得月銷售利潤達(dá)到元,銷售單價應(yīng)為多少?
(3)商店要使得月銷售利潤達(dá)到最大,銷售單價應(yīng)為多少?此時利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,是高線,過點(diǎn)作于點(diǎn),于點(diǎn),且,則下列判斷中不正確的是( )
A.是的平分線B.
C.D.圖中有對全等三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE,則∠AEB的度數(shù)為__________.
(2)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE.求∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠DAB的角平分線與∠ABC的外角平分線相交于點(diǎn)P,且∠D+∠C=200°,則∠P=( )
A. 10 ° B .20 ° C .30° D.40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,點(diǎn)E在AC的延長線上,且∠CBE=∠BAC.
(1)求證:BE是⊙O的切線;
(2)若∠ABC=65°,AB=6,求劣弧AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com