選做題:從甲、乙兩題中選做一題,如果兩題都做,只以甲題計(jì)分.
題甲:如圖1,正比例函數(shù)的圖象與反比例函數(shù)在第二象限的圖象交于A點(diǎn),過A點(diǎn)作x軸的垂線,垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果B為反比例函數(shù)圖象上的點(diǎn),且B點(diǎn)的橫坐標(biāo)為-1,在x軸上一點(diǎn)P,使PA+PB最小,求P點(diǎn)的坐標(biāo).
題乙:如圖2,已知AB、AC分別為⊙O的直徑和弦,D為BC的中點(diǎn),DE⊥AC于E,DE=6,AC=16.
(1)求證:DE與⊙O相切;
(2)求直徑AB的長.

【答案】分析:甲(1)設(shè)A(x,-x),根據(jù)△OAM的面積為1,求出x的值,進(jìn)而求出反比例函數(shù)系數(shù)k;
(2)作B關(guān)于x軸的對稱點(diǎn)N,連結(jié)AN,交x軸于P,AN就是PA+PB的最小值,求出N點(diǎn)坐標(biāo),由兩點(diǎn)間距離公式求出AN的長;
乙(1)連結(jié)OD,BC,證明四邊形CFDE是矩形,得到∠EDO是直角,相切證明;
(2)首先求出CB的長,然后利用勾股定理求出AB的長.
解答:題甲:解:點(diǎn)A是y=-x與y=(k≠0)的交點(diǎn),設(shè)A(x,-x),
∵△OAM的面積為1,
|AM|×|OM|=x=1,
解得x=±2,
∵點(diǎn)A在第二象限,所以x=-2,
(-)(-2)=-,k=-2,
反比例函數(shù)的解析式為y=-;

(2)如圖,作B關(guān)于x軸的對稱點(diǎn)N,連結(jié)AN,交x軸于P,
AN就是PA+PB的最小值,
過A作NB的垂線,交BN于G
∵B在y=-上,且橫坐標(biāo)為-1,
∴B的縱坐標(biāo)為2,
∴N(-1,-2),
AN===,
∴PA+PB的最小值為

題乙:證明:(1)如圖連結(jié)OD,BC,
∵D為BC的中點(diǎn),
∴OD⊥BC,
又∵AB是直徑,
∴AC⊥BC,
∴四邊形CFDE是矩形,
∴∠EDO是直角,所以DE與⊙O相切,

(2)∵DE=6,
∴CB=2CF=2ED=12,
又∵AC=16,
∴AB===20.
點(diǎn)評:本題主要考查反比例函數(shù)的綜合題以及切線的判定的知識點(diǎn),解答本題的關(guān)鍵是熟練掌握反比例函數(shù)圖象上點(diǎn)的特點(diǎn)以及切線判定定理等知識,此題難度不大,但是綜合在一起,還是有一定的難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

本題為選做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計(jì)分.
甲題:關(guān)于x的一元二次方程x2+(2k-3)x+k2=0有兩個不相等的實(shí)數(shù)根α、β.
(1)求k的取值范圍;
(2)若α+β+αβ=6,求(α-β)2+3αβ-5的值.
乙題:如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF=
14
DC,連接EF并延長交BC的延長線于點(diǎn)G
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

選做題:從甲、乙兩題中選做一題,如果兩題都做,只以甲題計(jì)分.
題甲:已知關(guān)于x的方程x2+2(a-1)x+a2-7a-4=0的兩根為x1、x2,且滿足x1x2-3x1-3x2-2=0.求(1+
4
a2-4
)•
a+2
a
的值.
題乙:如圖,在梯形ABCD中,AD∥BC,對角線AC、BD相交于點(diǎn)O,AD=2,BC=BD=3,AC精英家教網(wǎng)=4.
(1)求證:AC⊥BD;
(2)求△AOB的面積.
我選做的是
 
題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)本題為選做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計(jì)分.
選做題:甲:已知關(guān)于x的一元二次方程x2-(2m+1)x+m2+m-2=0
(1)求證:不論m取何值,方程總有兩個不相等的實(shí)數(shù)根;
(2)若方程的兩個實(shí)數(shù)根x1、x2滿足
1
x1
+
1
x2
=1+
1
m+2
,求m的值.
乙:如圖,點(diǎn)D是⊙O的直徑CA延長線上一點(diǎn),點(diǎn)B在⊙O上,且AB=AD=AO.
(1)求證:BD是⊙O的切線.
(2)若點(diǎn)E是劣弧BC上一點(diǎn),AE與BC相交于點(diǎn)F,且△BEF的面積為8,cos∠BFA=
2
3
,求△ACF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•峨眉山市二模)選做題:從甲、乙兩題中選做一題,如果兩題都做,只以甲題計(jì)分.
題甲:如圖1,正比例函數(shù)y=-
1
2
x
的圖象與反比例函數(shù)y=
k
x
(k≠0)
在第二象限的圖象交于A點(diǎn),過A點(diǎn)作x軸的垂線,垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果B為反比例函數(shù)圖象上的點(diǎn),且B點(diǎn)的橫坐標(biāo)為-1,在x軸上一點(diǎn)P,使PA+PB最小,求P點(diǎn)的坐標(biāo).
題乙:如圖2,已知AB、AC分別為⊙O的直徑和弦,D為BC的中點(diǎn),DE⊥AC于E,DE=6,AC=16.
(1)求證:DE與⊙O相切;
(2)求直徑AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

本題為選做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計(jì)分.
甲:如圖,△ABC中,AB=AC,以AB為直徑作⊙O,與BC交于點(diǎn)D,過D作AC的垂線,垂足為E.
證明:(1)BD=DC;(2)DE是⊙O的切線.

乙:已知關(guān)于x的一元二次方程mx2-(2m-1)x+m-2=0(m>0).
(1)證明:這個方程有兩個不相等的實(shí)根
(2)如果這個方程的兩根分別為x1,x2,且(x1-5)(x2-5)=5m,求m的值.

查看答案和解析>>

同步練習(xí)冊答案