【題目】如圖,直線AECD相交于點B,射線BF平分∠ABC,射線BG在∠ABD內(nèi),

(1)若∠DBE的補角是它的余角的3倍,求∠DBE的度數(shù);

(2)在(1)的件下,若∠DBG=∠ABG﹣33°,求∠ABG的度數(shù);

(3)若∠FBG=100°,求∠ABG和∠DBG的度數(shù)的差.

【答案】(1)∠DBE的度數(shù)為45°;(2)∠ABG的度數(shù)為84°;(3)∠ABG和∠DBG的度數(shù)的差為20°.

【解析】

(1)設(shè)∠DBE=α,則∠DBE的補角是,它的余角是依據(jù)的補角是它的余角的3倍,即可得到方程,求得的度數(shù);
(2)設(shè)∠ABG=x,DBG=y依題意得得到方程組,即可得到∠ABG的度數(shù);
(3)可設(shè)∠ABF=CBF=β,依據(jù)即可得到 依據(jù)可得∠ABG和∠DBG的度數(shù)的差為.

(1)設(shè)∠DBE=α,則∠DBE的補角是,它的余角是 依題意得

解得

∴∠DBE的度數(shù)為

(2)設(shè)∠ABG=xDBG=y,依題意得

解得

∴∠ABG的度數(shù)為

(3)∵射線BF平分∠ABC

∴可設(shè)∠ABF=CBF=β,

又∵

即∠ABG和∠DBG的度數(shù)的差為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:(1)20+(﹣14)﹣(﹣18)﹣13; (2)﹣2;

(3)(﹣7)×(﹣5)﹣90÷(﹣15) (4)-120×+(-7)×+37×

(5)﹣14﹣(1﹣0.5)××[2-(-3)2].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個直七棱柱,它的底面邊長都是,側(cè)棱長是,觀察這個棱柱,請回答下列問題:

這個七棱柱共有多少個面,它們分別是什么形狀?哪些面的形狀、面積完全相同?側(cè)面的面積是多少?由此你可以猜想出棱柱有多少個面?

這個七棱柱一共有多少條棱?它們的長度分別是多少?

這個七棱柱一共有多少個頂點?

通過對棱柱的觀察,你能說出棱柱的頂點數(shù)與的關(guān)系及棱的條數(shù)與的關(guān)系嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)的圖象與x軸、y軸分別交于點A,B,與函數(shù)y=x的圖象交于點M,點M的橫坐標為2.在x軸上有一點P (a,0)(其中a>2),過點P作x軸的垂線,分別交函數(shù)和y=x的圖象于點C,D.

(1)求點A的坐標;

(2)若OB=CD,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義運算:ab=a(1b).若a,b是方程x2x+m=0(m0)的兩根,則bbaa的值為

A. 0 B. 1 C. 2 D. m有關(guān)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.

(1)求證:PA是⊙O的切線;
(2)若AB=4+ ,BC=2 ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某倉庫本周運進貨物件數(shù)和運出貨物件數(shù)如下表:

星期

運進貨物件數(shù)

5

a

5

5

b

5

5

運出貨物件數(shù)

12

2a

8

0

b﹣5

5

10

(1)如果用正數(shù)表示運進貨物件數(shù),負數(shù)表示運出貨物件數(shù),請你分別表示出周二、周五當天進出貨物后變化的量;

(2)若經(jīng)過一周的時間,倉庫貨物總量相比上周末庫存量減少了5件,求a的值;

(3)若本周運進貨物總件數(shù)比運出貨物件數(shù)的一半多15件,本周運進貨物總件數(shù)比上周減少,而本周運出貨物總件數(shù)比上周多,這兩周內(nèi),該倉庫貨物共增加了3件,求a、b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明從A點出發(fā)向北偏東60°方向走了80m米到達B地,從B地他又向西走了160m到達C地.

(1)用1:4000的比例尺(即圖上1cm等于實際距離40m)畫出示意圖,并標上字母;

(2)用刻度尺出AC的距離(精確到0.01cm),并求出C但距A點的實際距離(精確到1m);

(3)用量角器測出C點相對于點A的方位角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點M、N分別在線段DA、BA的延長線上,且BD=BN=DM,連接BM、DN并延長交于點P.

求證:∠P=90°﹣C;

查看答案和解析>>

同步練習冊答案