【題目】如圖,△ABC內接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若AB=4+ ,BC=2 ,求⊙O的半徑.
【答案】
(1)證明:連接OA,
∵∠B=60°,
∴∠AOC=2∠B=120°,
又∵OA=OC,
∴∠OAC=∠OCA=30°,
又∵AP=AC,
∴∠P=∠ACP=30°,
∴∠OAP=∠AOC﹣∠P=90°,
∴OA⊥PA,
∴PA是⊙O的切線
(2)解:過點C作CE⊥AB于點E.
在Rt△BCE中,∠B=60°,BC=2 ,
∴BE= BC= ,CE=3,
∵AB=4+ ,
∴AE=AB﹣BE=4,
∴在Rt△ACE中,AC= =5,
∴AP=AC=5.
∴在Rt△PAO中,OA= ,
∴⊙O的半徑為 .
【解析】(1)連接OA,根據(jù)圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,繼而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,從而得出結論;(2)過點C作CE⊥AB于點E.在Rt△BCE中,∠B=60°,BC=2 ,于是得到BE= BC= ,CE=3,根據(jù)勾股定理得到AC= =5,于是得到AP=AC=5.解直角三角形即可得到結論.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是長方體紙盒的平面展開圖,設 AB=x cm,若 AD =4x cm,AN=3x cm.
(1)求長方形 DEFG 的周長與長方形 ABMN 的周長(用字母 x 進行表示);
(2)若長方形 DEFG 的周長比長方形 ABMN 的周長少 8cm,求 x 的值;
(3)在第(2)問的條件下,求原長方體紙盒的容積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,畫一個長和寬分別為、的長方形,并將其按一定的方式進行旋轉.
你能得到幾種不同的圓柱體?
把一個平面圖形旋轉成幾何體,必須明確哪兩個條件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】山地自行車越來越受到中學生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛銷售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.
(1)今年A型車每輛售價多少元?(用列方程的方法解答)
(2)該車行計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應如何進貨才能使這批車獲利最多?
A,B兩種型號車的進貨和銷售價格如下表:
A型車 | B型車 | |
進貨價格(元) | 1100 | 1400 |
銷售價格(元) | 今年的銷售價格 | 2000 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AE與CD相交于點B,射線BF平分∠ABC,射線BG在∠ABD內,
(1)若∠DBE的補角是它的余角的3倍,求∠DBE的度數(shù);
(2)在(1)的件下,若∠DBG=∠ABG﹣33°,求∠ABG的度數(shù);
(3)若∠FBG=100°,求∠ABG和∠DBG的度數(shù)的差.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)
(2)5+(﹣ )﹣7﹣(﹣2.5)
(3)(﹣)×(﹣)+(﹣)×(+)
(4)
(5)8﹣23÷(﹣4)3+
(6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣ )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定:在正方形ABCD中,以正方形的一個頂點A為頂點,且過對角頂點C的拋物線,稱為這個正方形的以A為頂點的對角拋物線.
(1)在平面直角坐標系xOy中,點在軸正半軸上,點C在y軸正半軸上.
①如圖1,正方形OABC的邊長為2,求以O為頂點的對角拋物線;
②如圖2,在平面直角坐標系xOy中,正方形OABC的邊長為a,其以O為頂點的對角拋物線的解析式為y= x2 , 求a的值;
(2)如圖3,正方形ABCD的邊長為4,且點A的坐標為(3,2),正方形的四條對角拋物線在正方形ABCD內分別交于點M、P、N、Q,直接寫出四邊形MPNQ的形狀和四邊形MPNQ的對角線的交點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,CE∥BF,
A. E、F、D在一直線上,BC與AD交于點O,且OE=OF,則圖中有全等三角形的對數(shù)為( )
A. 2
B. 3
C. 4
D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD中,E是AD上一點,F是AB上的一點,EF⊥EC,且EF=EC.
(1)求證:△AEF≌△DCE.
(2)若DE=4cm,矩形ABCD的周長為32cm,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com