如圖,在⊙O中,E是半徑OA上一點(diǎn),射線EF⊥OA,交圓于B,P為EB上任一點(diǎn),射線AP交圓于C,D為射線BF上一點(diǎn),且DC=DP,下列結(jié)論:①CD為⊙O的切線;②PA>PC;③∠CDP=2∠A,其中正確的結(jié)論有( )

A.3個(gè)
B.2個(gè)
C.1個(gè)
D.0個(gè)
【答案】分析:根據(jù)已知及切線的判定等對(duì)各個(gè)結(jié)論進(jìn)行分析,從而得到答案.
解答:解:∵DC=DP,
∴∠DPC=∠DCP,
∵∠DPC=∠APE,
∴∠DCP=∠APE,
∵OA=OC,
∴∠OAC=∠OCA;
∵∠OAC+∠APE=90°,
∴∠OCA+∠DCP=90°,
∴CD為⊙O的切線(①正確);
②不一定;
連接CO,∵∠DCP=(180°-2∠A),
又∵∠DCP=(180°-∠CDP),
∴180°-2∠A=180°-∠CDP,
∴∠CDP=2∠A,③正確.
故選B.
點(diǎn)評(píng):本題主要考查了切線的判定的理解及運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,在△ABC中,BD是∠ABC的平分線,DE∥BC,交AB與點(diǎn)E,∠A=60°,∠BDC=105°,則∠BDE=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,E是BC的中點(diǎn),且∠AEC=∠DCE,下列結(jié)論中正確的有( 。
①BF=
1
2
DF                   ②S△AFD=2S△EFB
③四邊形AECD是等腰梯形      ④∠AEB=∠ADC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,AD是它的角平分線,且EB=FC,DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).求證:BD=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AD是∠BAC的平分線,DE⊥AB于E,DF⊥AC于F,試猜想EF與AD之間有什么關(guān)系?并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,D是BC邊的中點(diǎn),E是AD的中點(diǎn),連接BE并延長(zhǎng)到點(diǎn)F,使EF=BE,連接AF、CF.
(1)試說(shuō)明ADCF是平行四邊形;
(2)當(dāng)△ABC滿(mǎn)足什么條件時(shí),四邊形ADCF是矩形,并說(shuō)明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案