【題目】閱讀材料:韋達(dá)定理:設(shè)一元二次方程ax2+bx+c=0(且a≠0)中,兩根有如下關(guān)系:,.

已知p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,求 的值.

解:由p2﹣p﹣1=01﹣q﹣q2=0,可知p≠0,q≠0

又∵pq≠1,∴

∴1﹣q﹣q2=0可變形為的特征.

所以p是方程x2﹣x﹣1=0的兩個(gè)不相等的實(shí)數(shù)根.

p+=1,

=1.

根據(jù)閱讀材料所提供的方法,完成下面的解答.

已知:2m2﹣5m﹣1=0,,且m≠n.求: 的值.

【答案】-5.

【解析】

類比材料中所給的方法解答即可.

2n2﹣5n﹣1=0,

根據(jù)2m2﹣5m﹣1=02n2﹣5n﹣1=0的特征,且m≠n,

∴mn是方程2x2﹣5x﹣1=0的兩個(gè)不相等的實(shí)數(shù)根

∴m+n= ,mn= ,

==-5. .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線 l 經(jīng)過點(diǎn)A(2,﹣3),與 x 軸交于點(diǎn) B,且與直線y=3x-平行.

(1)求直線l的函數(shù)解析式及點(diǎn)B的坐標(biāo);

(2)如直線l上有一點(diǎn) M(a,﹣6),過點(diǎn) M x 軸的垂線,交直線 y=3x-于點(diǎn)N,在線段MN上求一點(diǎn)P,使△PAB是直角三角形,請求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知等邊ABC的兩個(gè)頂點(diǎn)的坐標(biāo)為A(-4,0),B2,0).

1)用尺規(guī)作圖作出點(diǎn)C,并求出點(diǎn)C的坐標(biāo);

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y2x與反比例函數(shù)y (k≠0,x0)的圖象交于點(diǎn)A(1,a),點(diǎn)B是此反比例函數(shù)圖象上任意一點(diǎn)(不與點(diǎn)A重合),BCx軸于點(diǎn)C.

(1)k的值;

(2)OBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD在平面直角坐標(biāo)系中的位置如圖所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函數(shù)的圖象經(jīng)過點(diǎn)C.

(1)求此反比例函數(shù)的解析式;

(2)將平行四邊形ABCD沿x軸翻折得到平行四邊形AD′C′B,請你通過計(jì)算說明點(diǎn)D′在雙曲線上;

(3)請你畫出AD′C,并求出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線分別與軸,軸交于兩點(diǎn).

(1)求線段AB的長度;

(2)若點(diǎn)在第二象限,且△為等腰直角三角形,求點(diǎn)的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中,兩個(gè)三角形的頂點(diǎn)都在格點(diǎn)(網(wǎng)線的交點(diǎn))上,下列方案中不能把ABC平移至DEF位置的是(

A.先把ABC沿水平方向向右平移4個(gè)單位長度,再向上平移3個(gè)單位長度

B.先把ABC向上平移3個(gè)單位長度,再沿水平方向向右平移4個(gè)單位長度

C.ABC沿BE方向移動5個(gè)單位長度

D.ABC沿BE方向移動6個(gè)單位長度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:x26x(x26x+9)9(x3)29;﹣x2+10=﹣(x210x+25)+25=﹣(x5)2+25,這一種方法稱為配方法,利用配方法請解以下各題:

(1)按上面材料提示的方法填空:a24a      .﹣a2+12a      

(2)探究:當(dāng)a取不同的實(shí)數(shù)時(shí)在得到的代數(shù)式a24a的值中是否存在最小值?請說明理由.

(3)應(yīng)用:如圖.已知線段AB6,MAB上的一個(gè)動點(diǎn),設(shè)AMx,以AM為一邊作正方形AMND,再以MB、MN為一組鄰邊作長方形MBCN.問:當(dāng)點(diǎn)MAB上運(yùn)動時(shí),長方形MBCN的面積是否存在最大值?若存在,請求出這個(gè)最大值;否則請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,以ABCD的頂點(diǎn)A為圓心,AB為半徑作圓,分別交AD,BC于點(diǎn)E、F,延長BA⊙AG.

(1)求證:.

(2)若的度數(shù)為70°,求∠C的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案