【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C,連結(jié)BC,點(diǎn)P為拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線l,交直線BC于點(diǎn)G,交x軸于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)當(dāng)P位于y軸右邊的拋物線上運(yùn)動(dòng)時(shí),過點(diǎn)C作CF⊥直線l,F(xiàn)為垂足,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),以P,C,F(xiàn)為頂點(diǎn)的三角形與△OBC相似?并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P在位于直線BC上方的拋物線上運(yùn)動(dòng)時(shí),連結(jié)PC,PB,請問△PBC的面積S能否取得最大值?若能,請求出最大面積S,并求出此時(shí)點(diǎn)P的坐標(biāo),若不能,請說明理由.
【答案】
(1)
解:將點(diǎn)A(﹣1,0),B(4,0)的坐標(biāo)代入函數(shù)的表達(dá)式得: ,
解得:b=3,c=4.
拋物線的解析式為y=﹣x2+3x+4.
(2)
解:如圖1所示:
∵令x=0得y=4,
∴OC=4.
∴OC=OB.
∵∠CFP=∠COB=90°,
∴FC=PF時(shí),以P,C,F(xiàn)為頂點(diǎn)的三角形與△OBC相似.
設(shè)點(diǎn)P的坐標(biāo)為(a,﹣a2+3a+4)(a>0).
則CF=a,PF=|﹣a2+3a+4﹣4|=|a2﹣3a|.
∴|a2﹣3a|=a.
解得:a=2,a=4.
∴點(diǎn)P的坐標(biāo)為(2,6)或(4,0).
(3)
解:如圖2所示:連接EC.
設(shè)點(diǎn)P的坐標(biāo)為(a,﹣a2+3a+4).則OE=a,PE=﹣a2+3a+4,EB=4﹣a.
∵S四邊形PCEB= OBPE= ×4(﹣a2+3a+4),S△CEB= EBOC= ×4×(4﹣a),
∴S△PBC=S四邊形PCEB﹣S△CEB=2(﹣a2+3a+4)﹣2(4﹣a)=﹣2a2+8a.
∵a=﹣2<0,
∴當(dāng)a=2時(shí),△PBC的面積S有最大值.
∴P(2,6),△PBC的面積的最大值為8.
【解析】(1)將點(diǎn)A(﹣1,0),B(4,0)的坐標(biāo)代入拋物線的解析式,求得b、c的值即可;(2)先由函數(shù)解析式求得點(diǎn)C的坐標(biāo),從而得到△OBC為等腰直角三角形,故此當(dāng)CF=PF時(shí),以P,C,F(xiàn)為頂點(diǎn)的三角形與△OBC相似.
設(shè)點(diǎn)P的坐標(biāo)為(a,﹣a2+3a+4).則CF=a,PF=﹣a2+3a,接下來列出關(guān)于a的方程,從而可求得a的值,于是可求得點(diǎn)P的坐標(biāo);(3)連接EC.設(shè)點(diǎn)P的坐標(biāo)為(a,﹣a2+3a+4).則OE=a,PE=﹣a2+3a+4,EB=4﹣a.然后依據(jù)S△PBC=S四邊形PCEB﹣S△CEB列出△PBC的面積與a的函數(shù)關(guān)系式,從而可求得三角形的最大面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=x2+mx的對稱軸是x=3,則關(guān)于x的方程x2+mx=7的解為( )
A.x1=0,x2=6
B.x1=1,x2=7
C.x1=1,x2=﹣7
D.x1=﹣1,x2=7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,在AB邊上取一點(diǎn)D,使BD=BC,過D作DE⊥AB交AC于E,AC=8,BC=6.求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于點(diǎn)P(x,y),若點(diǎn)Q的坐標(biāo)為(x,|x﹣y|),則稱點(diǎn)Q為點(diǎn)P的“關(guān)聯(lián)點(diǎn)”.
(1)請直接寫出點(diǎn)(2,2)的“關(guān)聯(lián)點(diǎn)”的坐標(biāo);
(2)如果點(diǎn)P在函數(shù)y=x﹣1的圖像上,其“關(guān)聯(lián)點(diǎn)”Q與點(diǎn)P重合,求點(diǎn)P的坐標(biāo);
(3)如果點(diǎn)M(m,n)的“關(guān)聯(lián)點(diǎn)”N在函數(shù)y=x2的圖像上,當(dāng)0≤m≤2時(shí),求線段MN的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將九年級部分男生擲實(shí)心球的成績進(jìn)行整理,分成5個(gè)小組(x表示成績,單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖(不完整).規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.
(1)這部分男生有多少人?其中成績合格的有多少人?
(2)這部分男生成績的中位數(shù)落在哪一組?扇形統(tǒng)計(jì)圖中D組對應(yīng)的圓心角是多少度?
(3)要從成績優(yōu)秀的學(xué)生中,隨機(jī)選出2人介紹經(jīng)驗(yàn),已知甲、乙兩位同學(xué)的成績均為優(yōu)秀,求他倆至少有1人被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y1= 與一次函數(shù)y2=k2x+b的圖象交于點(diǎn)A(1,8),B(﹣4,m)兩點(diǎn).
(1)求k1 , k2 , b的值;
(2)求△AOB的面積;
(3)請直接寫出不等式 x+b的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC與BD相交于點(diǎn)O,且BE∥AC,CE∥BD.
(1)求證:四邊形OBEC是矩形;
(2)若菱形ABCD的周長是4 ,tanα= ,求四邊形OBEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=a(x+1)2﹣3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣ ),頂點(diǎn)為D,對稱軸與x軸交于點(diǎn)H,過點(diǎn)H的直線l交拋物線于P,Q兩點(diǎn),點(diǎn)Q在y軸的右側(cè).
(1)求a的值及點(diǎn)A,B的坐標(biāo);
(2)當(dāng)直線l將四邊形ABCD分為面積比為3:7的兩部分時(shí),求直線l的函數(shù)表達(dá)式;
(3)當(dāng)點(diǎn)P位于第二象限時(shí),設(shè)PQ的中點(diǎn)為M,點(diǎn)N在拋物線上,則以DP為對角線的四邊形DMPN能否為菱形?若能,求出點(diǎn)N的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com