(2008•杭州)如圖,記拋物線y=-x2+1的圖象與x正半軸的交點為A,將線段OA分成n等份,設分點分別為P1,P2,…Pn-1,過每個分點作x軸的垂線,分別與拋物線交于點Q1,Q2,…,Qn-1,再記直角三角形OP1Q1,P1P2Q2,…,Pn-2Pn-1Qn-1的面積分別為S1,S2,…,這樣就有S1=,S2=,…;記W=S1+S2+…+Sn-1,當n越來越大時,你猜想W最接近的常數(shù)是( )

A.
B.
C.
D.
【答案】分析:已知點Pn都在x軸上且將線段OA分成n等份,則每等分為,點Qn都在拋物線y=-x2+1上,三角形面積等于底乘以高的積的,利用垂直條件求出高,就可以把OP1Q1,P1P2Q2,…的面積表示出來,找出規(guī)律,寫出Sm的表達式再求和,最后當n很大時,求出W最接近的常數(shù).
解答:解:由圖象知S3=,總結出規(guī)律:
則w=S1+S2+…+Sn-1=++…+=
=
=
=--+-
=--,
當n越來越大時,可知W最接近的常數(shù)為
故選C.
點評:此題考查拋物線性質和面積公式,是道規(guī)律題,要結合圖象和幾何關系,求出統(tǒng)一表達式Sm,學會觀察圖形求面積.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《三角形》(11)(解析版) 題型:解答題

(2008•杭州)如圖,在等腰△ABC中,CH是底邊上的高線,點P是線段CH上不與端點重合的任意一點,連接AP交BC于點E,連接BP交AC于點F.
(1)證明:∠CAE=∠CBF;
(2)證明:AE=BF;
(3)以線段AE,BF和AB為邊構成一個新的三角形ABG(點E與點F重合于點G),記△ABC和△ABG的面積分別為S△ABC和S△ABG,如果存在點P,能使得S△ABC=S△ABG,求∠C的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省廣州市南沙區(qū)中考數(shù)學一模試卷(解析版) 題型:選擇題

(2008•杭州)如圖,已知直線AB∥CD,∠C=115°,∠A=25°,則∠E=( )

A.70°
B.80°
C.90°
D.100°

查看答案和解析>>

科目:初中數(shù)學 來源:2009年重慶市綦江縣趕水中學學模擬測試數(shù)學試卷(解析版) 題型:解答題

(2008•杭州)如圖,已知∠α,∠β,用直尺和圓規(guī)求作一個∠γ,使得∠γ=∠α-∠β.(只須作出正確圖形,保留作圖痕跡,不必寫出作法)

查看答案和解析>>

科目:初中數(shù)學 來源:2008年浙江省杭州市中考數(shù)學試卷(解析版) 題型:填空題

(2008•杭州)如圖,大圓O的半徑OC是小圓O1的直徑,且有OC垂直于圓O的直徑AB.圓O1的切線AD交OC的延長線于點E,切點為D.已知圓O1的半徑為r,則AO1=    ,DE=   

查看答案和解析>>

同步練習冊答案