【題目】如圖,已知直線AB經(jīng)過⊙O上的點C,且OA=OB,CA=CB,OA交⊙O于點E.
(1)證明:直線AB與⊙O相切;
(2)若AE=a,AB=b,求⊙O的半徑;(結(jié)果用a,b表示)
(3)過點C作弦CD⊥OA于點H,試探究⊙O的直徑與OH、OB之間的數(shù)量關系,并加以證明.

【答案】
(1)證明:如圖所示:連接CO,

∵OA=OB,AC=BC,

∴OC⊥AB,

∵OC為⊙O的半徑,

∴直線AB與⊙O相切


(2)解:在直角三角形OAC中用勾股定理就可以了.設半徑為r,則OC=r,OA=a+r,

AC= AB= b,

在Rt△AOC中,

OC2+AC2=OA2,

則r2+ b2=(a+r)2,

解得:r=


(3)解:d2=4OH×OB,

理由:∵OA⊥CD,OC⊥AC,

∴∠OCA=∠OHC,

∵∠HOC=∠COA,

∴△HOC∽△COA,

,

即OC2=OH×OA,

∵OC垂直平分AB,

∴OA=OB,

設直徑為d,則OC= ,

∴( 2=OH×OB,

即d2=4OH×OB.


【解析】(1)利用段垂直平分線的性質(zhì)得出OC⊥AB,進而得出答案即可;(2)利用勾股定理得出OC2+AC2=OA2 , 進而得出⊙O的半徑;(3)首先得出△HOC∽△COA,進而得出OC2=OH×OA,即可得出⊙O的直徑與OH、OB之間的數(shù)量關系.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線y=x2+ 與y軸相交于點A,點B與點O關于點A對稱

(1)填空:點B的坐標是;
(2)過點B的直線y=kx+b(其中k<0)與x軸相交于點C,過點C作直線l平行于y軸,P是直線l上一點,且PB=PC,求線段PB的長(用含k的式子表示),并判斷點P是否在拋物線上,說明理由;
(3)在(2)的條件下,若點C關于直線BP的對稱點C′恰好落在該拋物線的對稱軸上,求此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:
上課時李老師提出這樣一個問題:對于任意實數(shù)x,關于x的不等式x2﹣2x﹣1﹣a>0恒成立,求a的取值范圍.
小捷的思路是:原不等式等價于x2﹣2x﹣1>a,設函數(shù)y1=x2﹣2x﹣1,y2=a,畫出兩個函數(shù)的圖象的示意圖,于是原問題轉(zhuǎn)化為函數(shù)y1的圖象在y2的圖象上方時a的取值范圍.

(1)請結(jié)合小捷的思路回答:
對于任意實數(shù)x,關于x的不等式x2﹣2x﹣1﹣a>0恒成立,則a的取值范圍是
(2)參考小捷思考問題的方法,解決問題:
關于x的方程x﹣4= 在0<a<4范圍內(nèi)有兩個解,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2+2ax﹣3a(a>0)與x軸交于A,B兩點(點A在點B的左側(cè)).
(1)求拋物線的對稱軸及線段AB的長;
(2)拋物線的頂點為P,若∠APB=120°,求頂點P的坐標及a的值;
(3)若在拋物線上存在一點N,使得∠ANB=90°,結(jié)合圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2014年3月31日是全國中小學生安全教育日,某校全體學生參加了“珍愛生命,預防溺水”專題活動,學習了游泳“五不準”,為了了解學生對“五不準”的知曉情況,隨機抽取了200名學生作調(diào)查,請根據(jù)下面兩個不完整的統(tǒng)計圖解答問題:
(1)求在這次調(diào)查中,“能答5條”人數(shù)的百分比和“僅能答3條”的人數(shù);
(2)若該校共有2000名學生,估計該校能答3條不準以上(含3條)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某水上樂園有一個滑梯AB,高度AC為6米,傾斜角為60°,暑期將至,為改善滑梯AB的安全性能,把傾斜角由60°減至30°

(1)求調(diào)整后的滑梯AD的長度;
(2)調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數(shù)據(jù): ≈1.41, ≈2.45)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,我國漁政船在釣魚島海域C處測得釣魚島A在漁政船的北偏西30°的方向上,隨后漁政船以80海里/小時的速度向北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在漁政船的北偏西60°的方向上,求此時漁政船距釣魚島A的距離AB.(結(jié)果保留小數(shù)點后一位,其中 =1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+5與雙曲線y= (x>0)相交于A,B兩點,與x軸相交于C點,△BOC的面積是 .若將直線y=﹣x+5向下平移1個單位,則所得直線與雙曲線y= (x>0)的交點有(
A.0個
B.1個
C.2個
D.0個,或1個,或2個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某校舉行的“中國學生營養(yǎng)日”活動中,設計了抽獎環(huán)節(jié):在一只不透明的箱子中有3個球,其中2個紅球,1個白球,它們除顏色外均相同.
(1)隨機摸出一個球,恰好是紅球就能中獎,則中獎的概率是多少?
(2)同時摸出兩個球,都是紅球 就能中特別獎,則中特別獎的概率是多少?(要求畫樹狀圖或列表求解)

查看答案和解析>>

同步練習冊答案