9.多項式2x2-2xy+y2+4x+25的最小值為21.

分析 根據(jù)完全平方公式把多項式進行變形,根據(jù)非負(fù)數(shù)的性質(zhì)解答即可.

解答 解:2x2-2xy+y2+4x+25
=x2-2xy+y2+x2+4x+4+21
=(x-y)2+(x+2)2+21,
∵(x-y)2≥0,(x+2)2≥0,
∴(x-y)2+(x+2)2+21≥21,
∴多項式2x2-2xy+y2+4x+25的最小值為21,
故答案為:21.

點評 本題考查的是配方法的應(yīng)用,掌握完全平方公式、偶次方的非負(fù)性是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.在一節(jié)數(shù)學(xué)活動課上,王老師將本班學(xué)生身高數(shù)據(jù)(精確到1厘米)出示給大家,要求同學(xué)們各自獨立繪制一幅頻數(shù)分布直方圖,甲繪制的如圖①所示,乙繪制的如圖②所示,經(jīng)王老師批改,甲繪制的圖是正確的,乙在數(shù)據(jù)整理與繪圖過程中均有個別錯誤.
(1)寫出乙同學(xué)在數(shù)據(jù)整理或繪圖過程中的錯誤(寫出一個即可);
(2)甲同學(xué)在數(shù)據(jù)整理后若用扇形統(tǒng)計圖表示,則159.5-164.5這一部分所對應(yīng)的扇形圓心角的度數(shù)為120°;
(3)該班學(xué)生的身高數(shù)據(jù)的中位數(shù)是160或161;
(4)假設(shè)身高在169.5-174.5范圍的5名同學(xué)中,有2名女同學(xué),班主任老師想在這5名同學(xué)中選出2名同學(xué)作為本班的正、副旗手,那么恰好選中一名男同學(xué)和一名女同學(xué)當(dāng)正,副旗手的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.計算:($\frac{a+1}{{a}^{2}-1}$+1)•$\frac{{a}^{2}-2a+1}{a}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在Rt△ABC中,∠C=90°,M是直角邊AC上一點,MN⊥AB于點N,AN=3,AM=4,求cosB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.閱讀理解
如圖1,在△ABC中,當(dāng)DE∥BC時可以得到三組成比例線段:①$\frac{AD}{AB}=\frac{AE}{AC}=\frac{DE}{BC}$②$\frac{AD}{BD}=\frac{AE}{CE}$③$\frac{BD}{AB}=\frac{CE}{AC}$;反之,當(dāng)對應(yīng)線段成比例時也可以推出DE∥BC.

理解運用
三角形的內(nèi)接四邊形是指頂點在三角形各邊上的四邊形.
(1)如圖2,已知矩形DEFG是△ABC的一個內(nèi)接矩形,將矩形DEFG延CB方向向左平移得矩形PBQH,其中頂點D、E、F、G的對應(yīng)點分別為F、B、Q、H,在圖2中畫出平移后的圖形;
(2)在(1)所得圖形中,連接CH并延長交BP的延長線于點R,連接AR,求證:AR∥BC;
綜合實踐
(3)如圖3,某個區(qū)有一塊三角形空地,已知△ABC空地的邊AB=400米、BC=600米,∠ABC=45°;準(zhǔn)備在△ABC內(nèi)建設(shè)一個內(nèi)接矩形廣場DEFG(點E、F在邊BC上,點D、G分別在邊AB和AC上),三角形其余部分進行植被綠化,按要求欲使矩形DEFG的對角線EG最短,請在備用圖中畫出使對角線EG最短的矩形?并求出對角線EG最短距離(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.計算
(1)$\sqrt{18a}$•$\sqrt{2a}$(a≥0)
(2)$\sqrt{4\frac{1}{2}}$÷$\sqrt{2\frac{1}{4}}$
(3)$\sqrt{12}$+$\sqrt{18}$-$\sqrt{8}$-$\sqrt{32}$ 
(4)(3+$\sqrt{10}$)($\sqrt{2}$-$\sqrt{5}$)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.-$\frac{\sqrt{2}}{2}$的絕對值是(  )
A.-$\sqrt{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.為積極開展“六城同創(chuàng)”工作,我市綠化提質(zhì)改造工程正如火如荼地進行,需要大量的甲、乙兩種樹苗對濱江路進行綠化改造,某樹苗種植戶經(jīng)市場調(diào)研發(fā)現(xiàn):如果單獨種植甲種樹苗,所獲利潤y(萬元)與種植畝數(shù)x1(畝)之間存在正比例函數(shù)關(guān)系y=kx1,并且當(dāng)種植5畝時可獲利潤2萬元;如果單獨種植乙種樹苗,則所獲利潤y(萬元)與種植畝數(shù)x2(畝)之間存在二次函數(shù)關(guān)系:y=ax22+bx2,且種植2畝時能獲利潤2.4萬元,當(dāng)種植4畝時,可獲利潤3.2萬元
(1)請分別求出上述的正比例函數(shù)表達式與二次函數(shù)表達式
(2)如果種植戶想用10畝地同時種植甲、乙兩種樹苗,請設(shè)計一個能獲得最大利潤的種植方案,并求出按此方案種植所獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.為慶祝某家電商場正式營業(yè),該商場推出了兩種購物方案,方案一:購買家電不超過3000元按商品售價支付,超出3000元則超出部分可獲8折優(yōu)惠,方案二:如交納200元會費成為該商場會員,則購買家電可獲9折優(yōu)惠.若用x(元)表示家電售價,y(元)表示顧客支出金額.
(1)分別寫出兩種購物方案中y關(guān)于x的函數(shù)解析式;
(2)若某人計劃購買售價為3800元的洗衣機一臺,請分析選擇哪種方案更省錢?

查看答案和解析>>

同步練習(xí)冊答案