【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2;
(1)求反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象直接寫出﹣x>的解集;
(3)將直線l1:y=- x沿y向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
【答案】(1) y=﹣;(2) x<﹣4 或 0<x<4;(3) y=-.
【解析】
(1)直線l1:y= - x經(jīng)過點(diǎn)A,且A點(diǎn)的縱坐標(biāo)是2,可得A(-4,2),代入反比例函數(shù)解析式可得k的值;(2)根據(jù)圖象得到點(diǎn)B的坐標(biāo),進(jìn)而直接得到﹣ x> 的解集即可;(3)設(shè)平移后的直線 與 x 軸交于點(diǎn) D,連接 AD,BD,由平行線的性質(zhì)可得出S△ABC=S△ABF,即可得出關(guān)于OD的一元一次方程,解方程即可得出結(jié)論.
(1)∵直線 l1:y=﹣x 經(jīng)過點(diǎn) A,A 點(diǎn)的縱坐標(biāo)是 2,
∴當(dāng) y=2 時(shí),x=﹣4,
∴A(﹣4,2),
∵反比例函數(shù) y=的圖象經(jīng)過點(diǎn) A,
∴k=﹣4×2=﹣8,
∴反比例函數(shù)的表達(dá)式為 y=﹣;
(2)∵直線 l1:y=﹣x 與反比例函數(shù) y=的圖象交于 A,B 兩點(diǎn),
∴B(4,﹣2),
∴不等式﹣ x> 的解集為 x<﹣4 或 0<x<4;
(3)如圖,設(shè)平移后的直線 與 x 軸交于點(diǎn) D,連接 AD,BD,
∵CD∥AB,
∴△ABC 的面積與△ABD 的面積相等,
∵△ABC 的面積為 30,
∴S△AOD+S△BOD=30,即 OD(|yA|+|yB|)=30,
∴×OD×4=30,
∴OD=15,
∴D(15,0),
設(shè)平移后的直線 的函數(shù)表達(dá)式為 y=﹣x+b, 把 D(15,0)代入,可得 0=﹣×15+b,
解得 b=,
∴平移后的直線 的函數(shù)表達(dá)式為 y=-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x﹣1與坐標(biāo)軸交于A,B兩點(diǎn),點(diǎn)P是曲線y=(x>0)上一點(diǎn),若△PAB是以∠APB=90°的等腰三角形,則k= _________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活水平的不斷提高,旅游已成為人們的一種生活時(shí)尚.為 開發(fā)新的旅游項(xiàng)目,我市對(duì)某山區(qū)進(jìn)行調(diào)查,發(fā)現(xiàn)一瀑布.為測(cè)量它的高度,測(cè) 量人員在瀑布的對(duì)面山上 D 點(diǎn)處測(cè)得瀑布頂端 A 點(diǎn)的仰角是 30°,測(cè)得瀑布底端 B 點(diǎn)的俯角是 10°,AB 與水平面垂直.又在瀑布下的水平面測(cè)得 CG=27m, GF=17.6m(注:C、G、F 三點(diǎn)在同一直線上,CF⊥AB 于點(diǎn) F).斜坡 CD=20m, 坡角∠ECD=40°.求瀑布 AB 的高度.(參考數(shù)據(jù):≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是雙曲線y=﹣在第二象限分支上的一個(gè)動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為底作等腰△ABC,且∠ACB=120°,點(diǎn)C在第一象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y=上運(yùn)動(dòng),則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線BC與拋物線y=x2+bx+c交于點(diǎn)B(3,0)和點(diǎn)C(0,3),拋物線y=x2+bx+c過點(diǎn)B、C且與x軸的另一個(gè)交點(diǎn)為A.
(1)求直線BC及該拋物線的表達(dá)式;
(2)設(shè)該拋物線的頂點(diǎn)為D,求△DBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3與拋物線交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為.動(dòng)點(diǎn)P在拋物線上運(yùn)動(dòng)(不與點(diǎn)A、B重合),過點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)Q.當(dāng)PQ不與y軸重合時(shí),以PQ為邊作正方形PQMN,使MN與y軸在PQ的同側(cè),連結(jié)PM.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求b、c的值.
(2)當(dāng)點(diǎn)N落在直線AB上時(shí),直接寫出m的取值范圍.
(3)當(dāng)點(diǎn)P在A、B兩點(diǎn)之間的拋物線上運(yùn)動(dòng)時(shí),設(shè)正方形PQMN的周長(zhǎng)為C,求C與m之間的函數(shù)關(guān)系式,并寫出C隨m增大而增大時(shí)m的取值范圍.
(4)當(dāng)△PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn) P(x,y)在第一象限,且 x+y=12,點(diǎn) A(10,0)在 x 軸上,當(dāng)△OPA 為直角三角形時(shí),點(diǎn) P 的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)北碚萬達(dá)廣場(chǎng)地下停車場(chǎng)有5個(gè)出入口,每天早晨6點(diǎn)開始對(duì)外停車且此時(shí)車位空置率為75%,在每個(gè)出入口的車輛數(shù)均是勻速出入的情況下,如果開放2個(gè)進(jìn)口和3個(gè)出口,8小時(shí)車庫(kù)恰好停滿;如果開放3個(gè)進(jìn)口和2個(gè)出口,2小時(shí)車庫(kù)恰好停滿.2019年元旦節(jié)期間,由于商場(chǎng)人數(shù)增多,早晨6點(diǎn)時(shí)的車位空置率變?yōu)?/span>60%,又因?yàn)檐噹?kù)改造,只能開放2個(gè)進(jìn)口和1個(gè)出口,則從早晨6點(diǎn)開始經(jīng)過________小時(shí)車庫(kù)恰好停滿.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某反比例函數(shù)圖象的一支經(jīng)過點(diǎn)A(2,3)和點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),作BC⊥y軸,垂足為點(diǎn)C,連結(jié)AB,AC.
(1)求該反比例函數(shù)的解析式;
(2)若△ABC的面積為6,求直線AB的表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com