精英家教網 > 初中數學 > 題目詳情

【題目】在菱形ABCD中,點P、Q分別在BC、CD上,∠PAQ=∠B

1)如圖1,若APBC,求證:APAQ;

2)如圖2,若點PBC上一點,APAQ仍成立嗎?請說明理由.

【答案】1)成立;(2)成立,見解析

【解析】

(1)根據題意可利用菱形的性質證明△ABP≌△ADQAAS)即可解答

(2)過點AAEBC于點EAFCD于點F,在證明△AEP≌△AFQASA)即可解答

(1)在菱形ABCD中,

B+∠C=180°,ABAD,∠B=∠D,

∵∠PAQ=∠B,

∴∠PAQ+∠C=180°,

∴∠APC+∠AQC=180°,

APBC

∴∠APB=∠AQD=90°,

在△ABP與△ADQ中,

,

∴△ABP≌△ADQAAS),

APAQ

(2)過點AAEBC于點E,AFCD于點F

由(1)可知:AEAF,∠PAQ=∠B=∠EAF,

∴∠EAP=∠FAQ,

在△AEP與△AFQ中,

∴△AEP≌△AFQASA),

APAQ

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】陜西省相關文件規(guī)定,西安市實行居民階梯水價制度,對居民用水的基本水價實行三級價差,各階梯水價均為用戶終端水價,具體如下:

第一階梯:年用水量及以下,終端水價為/

第二階梯:年用水量(含),終端水價為/

第三階梯:年用水量以上,終端水價為/

城區(qū)居民階梯水價計量結算周期以年為單位,年用水量累計達到各階梯水量上限后,超出部分執(zhí)行下一階梯水價;年度周期之間水量不結轉,不累計.

設某戶居民2019年的年用水量為,應繳水費為(元).

1)寫出該戶居民2019年的年用水量為含)的之間的函數表達式.

2)若該戶居民2019年的應繳水費為元,則該戶居民2019年的年用水量為多少.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y1=3x5與反比例函數y2=的圖象相交A2,m),Bn,﹣6)兩點,連接OA,OB

1)求kn的值;

2)求AOB的面積;

3)直接寫出y1 y2時自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某年五月,我國南方某省A、B兩市遭受嚴重洪澇災害,鄰近縣市CD決定調運物資支援A、B兩市災區(qū).已知C市有救災物資240噸,D市有救災物資260噸,現(xiàn)將這些救災物資全部調往A、B兩市,A市需要的物資比B市需要的物資少100噸.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用分別為每噸15元和30元,設從D市運往B市的救災物資為x噸.

1A、B兩市各需救災物資多少噸?

2)設C、D兩市的總運費為w元,求wx之間的函數關系式,并寫出自變量x的取值范圍;

3)經過搶修,從D市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少m元(m0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊上,為邊上一動點,連接關于所在直線對稱,點分別為的中點,連接并延長交所在直線于點,連接.當為直角三角形時,的長為_________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點O是菱形ABCD對角線的交點,過點CCEOD,過點DDEACCEDE相交于點E

1)求證:四邊形OCED是矩形.

2)若AB4,∠ABC60°,求矩形OCED的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD中,點PCD的中點,∠BCD=60°,射線APBC的延長線于點E,射線BPDE于點K,點O是線段BK的中點,作BM⊥AE于點M,作KN⊥AE于點N,連結MONO,以下四個結論:①△OMN是等腰三角形;②tan∠OMN=;③BP=4PK;④PMPA=3PD2,其中正確的是( 。

A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知矩形紙片中,,,點邊上的動點(點不與點、重合),如圖1所示,沿折痕翻折得到,設

1)當、、在同一直線上時,求的值;

2)如圖2,點邊上,沿再次折疊紙片,使點的對應點在直線上,

①求的最小值;

②點能否落在邊上?若能,求出的值,若不能,試說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,我們把以拋物線上的動點A為頂點的拋物線叫做這條拋物線的子拋物線.如圖,已知某條子拋物線的二次項系數為,且與y軸交于點C.設點A的橫坐標為mm0),過點Ay軸的垂線交y軸于點B

1)當m=1時,求這條子拋物線的解析式;

2)用含m的代數式表示∠ACB的余切值;

3)如果∠OAC=135°,求m的值.

查看答案和解析>>

同步練習冊答案