已知拋物線的圖象經(jīng)過原點(diǎn)O,交軸于點(diǎn)A,其頂點(diǎn)B的坐標(biāo)為.

(1)求該拋物線的函數(shù)關(guān)系式及點(diǎn)A的坐標(biāo);

(2)在拋物線上求點(diǎn)P,使

(3)在拋物線上是否存在點(diǎn)Q,使△QAO與△AOB相似?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.

解:(1)(3分)∵拋物線的頂點(diǎn)為B

∴設(shè)

拋物線經(jīng)過原點(diǎn)(0、0)

,即

得:

解得,,∴A的坐標(biāo)為(6,0)

        (2)∵△AOB與△POA同底不同高,且

∴△POA中OA邊上的高是△AOB中OA邊上高的2倍

即P點(diǎn)縱坐標(biāo)是

,

解得,

,

(3)過B作BC⊥軸于C

在Rt△OBC中,tan∠OBC=

∴∠OBC=,而OB=AB,故∠OBA=

分兩種情況:當(dāng)點(diǎn)Q在軸下方時,△QAO就是△BAO,

此時Q點(diǎn)坐標(biāo)Q

當(dāng)點(diǎn)Q在軸上方時,由△ABO∽△QAO,有AQ=OA=6,∠OAQ=,

作QD⊥軸,,垂足為D,則∠QAD=,

,AD=3,

∴OD=9.

此時Q點(diǎn)坐標(biāo)是

滿足關(guān)系,即Q在拋物線上

根據(jù)對稱性可知點(diǎn)也滿足條件

∴Q點(diǎn)坐標(biāo)為,,

          

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線的圖象經(jīng)過點(diǎn)A(1,0),頂點(diǎn)P的坐標(biāo)是(
5
2
,
9
4
)

(l)求拋物線的解析式;
(2)求此拋物線與兩坐標(biāo)軸的三個交點(diǎn)所圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的圖象經(jīng)過點(diǎn)A(1,0),頂點(diǎn)P的坐標(biāo)是數(shù)學(xué)公式
(l)求拋物線的解析式;
(2)求此拋物線與兩坐標(biāo)軸的三個交點(diǎn)所圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的圖象經(jīng)過點(diǎn)A(1,0),頂點(diǎn)P的坐標(biāo)是(
5
2
,
9
4
)

(l)求拋物線的解析式;
(2)求此拋物線與兩坐標(biāo)軸的三個交點(diǎn)所圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省杭州市上城區(qū)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線的圖象經(jīng)過點(diǎn)A(1,0),頂點(diǎn)P的坐標(biāo)是
(l)求拋物線的解析式;
(2)求此拋物線與兩坐標(biāo)軸的三個交點(diǎn)所圍成的三角形的面積.

查看答案和解析>>

同步練習(xí)冊答案