【題目】在某次海上軍事學習期間,我軍為確!鱋BC海域內(nèi)的安全,特派遣三艘軍艦分別在O、B、C處監(jiān)控△OBC海域,在雷達顯示圖上,軍艦B在軍艦O的正東方向80海里處,軍艦C在軍艦B的正北方向60海里處,三艘軍艦上裝載有相同的探測雷達,雷達的有效探測范圍是半徑為r的圓形區(qū)域.(只考慮在海平面上的探測)

(1)若三艘軍艦要對△OBC海域進行無盲點監(jiān)控,則雷達的有效探測半徑r至少為多少海里?
(2)現(xiàn)有一艘敵艦A從東部接近△OBC海域,在某一時刻軍艦B測得A位于北偏東60°方向上,同時軍艦C測得A位于南偏東30°方向上,求此時敵艦A離△OBC海域的最短距離為多少海里?
(3)若敵艦A沿最短距離的路線以20 海里/小時的速度靠近△OBC海域,我軍軍艦B沿北偏東15°的方向行進攔截,問B軍艦速度至少為多少才能在此方向上攔截到敵艦A?

【答案】
(1)

解:在RT△OBC中,∵BO=80,BC=60,∠OBC=90°,

∴OC= = =100,

OC= ×100=50

∴雷達的有效探測半徑r至少為50海里


(2)

解:作AM⊥BC于M,

∵∠ACB=30°,∠CBA=60°,

∴∠CAB=90°,

∴AB= BC=30,

在RT△ABM中,∵∠AMB=90°,AB=30,∠BAM=30°,

∴BM= AB=15,AM= BM=15

∴此時敵艦A離△OBC海域的最短距離為15 海里


(3)

假設(shè)B軍艦在點N處攔截到敵艦.在BM上取一點H,使得HB=HN,設(shè)MN=x,

∵∠HBN=∠HNB=15°,

∴∠MHN=∠HBN+∠HNB=30°,

∴HN=HB=2x,MH= x,

∵BM=15,

∴15= x+2x,

x=30﹣15 ,

∴AN=30 ﹣30,

BN= =15( ),設(shè)B軍艦速度為a海里/小時,

由題意

∴a≥20.

∴B軍艦速度至少為20海里/小時.


【解析】(1)求出OC,由題意r≥ OC,由此即可解決問題.(2)作AM⊥BC于M,求出AM即可解決問題.(3)假設(shè)B軍艦在點N處攔截到敵艦.在BM上取一點H,使得HB=HN,設(shè)MN=x,先列出方程求出x,再求出BN、AN利用不等式解決問題.本題考查解直角三角形的應(yīng)用、方位角、直角三角形30°角性質(zhì)等知識,解題的關(guān)鍵是理解題意,學會添加常用輔助線,屬于中考?碱}型.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校九年級學生的身高情況,隨機抽取部分學生的身高進行調(diào)查,利用所得數(shù)據(jù)繪成如圖統(tǒng)計圖表:
頻數(shù)分布表

身高分組

頻數(shù)

百分比

x<155

5

10%

155≤x<160

a

20%

160≤x<165

15

30%

165≤x<170

14

b

x≥170

6

12%

總計

100%


(1)填空:a= , b=;
(2)補全頻數(shù)分布直方圖;
(3)該校九年級共有600名學生,估計身高不低于165cm的學生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.

(1)判斷直線MN與⊙O的位置關(guān)系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經(jīng)過點B(1,4)和點E(3,0)兩點.

(1)求拋物線的解析式;
(2)若點D在線段OC上,且BD⊥DE,BD=DE,求D點的坐標;
(3)在條件(2)下,在拋物線的對稱軸上找一點M,使得△BDM的周長為最小,并求△BDM周長的最小值及此時點M的坐標;
(4)在條件(2)下,從B點到E點這段拋物線的圖象上,是否存在一個點P,使得△PAD的面積最大?若存在,請求出△PAD面積的最大值及此時P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2﹣4a(a>0)與x軸相交于A,B兩點(點A在點B的左側(cè)),點P是拋物線上一點,且PB=AB,∠PBA=120°,如圖所示.

(1)求拋物線的解析式.
(2)設(shè)點M(m,n)為拋物線上的一個動點,且在曲線PA上移動.
①當點M在曲線PB之間(含端點)移動時,是否存在點M使△APM的面積為 ?若存在,求點M的坐標;若不存在,請說明理由.
②當點M在曲線BA之間(含端點)移動時,求|m|+|n|的最大值及取得最大值時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結(jié)論:①△AEF~△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .其中正確的結(jié)論有( )

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,地面上兩個村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內(nèi).當該飛行器飛行至村莊C的正上方A處時,測得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時,測得∠ABD=75°.求村莊C、D間的距離( 取1.73,結(jié)果精確到0.1千米).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知P是線段AB的黃金分割點,且PA>PB,若S1表示PA為一邊的正方形的面積,S2表示長是AB,寬是PB的矩形的面積,則S1S2 . (填“>”“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊AD與矩形EFGH的邊FG重合,將正方形ABCD以1cm/s的速度沿FG方向移動,移動開始前點A與點F重合,在移動過程中,邊AD始終與邊FG重合,連接CG,過點A作CG的平行線交線段GH于點P,連接PD.已知正方形ABCD的邊長為1cm,矩形EFGH的邊FG,GH的長分別為4cm,3cm,設(shè)正方形移動時間為x(s),線段GP的長為y(cm),其中0≤x≤2.5.
(1)試求出y關(guān)于x的函數(shù)關(guān)系式,并求當y=3時相應(yīng)x的值;
(2)記△DGP的面積為S1 , △CDG的面積為S2 . 試說明S1﹣S2是常數(shù);
(3)當線段PD所在直線與正方形ABCD的對角線AC垂直時,求線段PD的長.

查看答案和解析>>

同步練習冊答案