【題目】如圖,△ABC內(nèi)接于⊙O,直徑AD交BC于點(diǎn)E,延長(zhǎng)AD至點(diǎn)F,使DF=2OD,連接FC并延長(zhǎng)交過(guò)點(diǎn)A的切線于點(diǎn)G,且滿足AG∥BC,連接OC,若cos∠BAC=,BC=6.
(1)求證:∠COD=∠BAC;
(2)求⊙O的半徑OC;
(3)求證:CF是⊙O的切線.
【答案】(1)見(jiàn)解析;(2);(3)見(jiàn)解析
【解析】
(1)由AG是⊙O的切線得到∠GAF=90°,再由AG∥BC得出AE⊥BC,符合垂徑定理,得出∠BAC=2∠EAC,由圓周角定理得到∠COE=2∠CAE,于是可證;
(2)由題意可得=,設(shè)OE=x,則OC=3x,根據(jù)勾股定理列方程x2+32=9x2,解出即可;
(3)由題意可證明,再證△COE∽△FOC,于是可得∠OCF=∠DEC=90°,故可證CF是⊙O的切線.
解:(1)∵AG是⊙O的切線,AD是⊙O的直徑,
∴∠GAF=90°,
∵AG∥BC,
∴AE⊥BC,
∴,
∴∠BAC=2∠EAC,
∵∠COE=2∠CAE,
∴∠COD=∠BAC;
(2)∵∠COD=∠BAC,
∴cos∠BAC=cos∠COE==,
∴設(shè)OE=x,OC=3x,
∵BC=6,
∴CE=3,
∵CE⊥AD,
∴OE2+CE2=OC2,
∴x2+32=9x2,
∴x=(負(fù)值舍去),
∴OC=3x=,
∴⊙O的半徑OC為;
(3)∵DF=2OD,
∴OF=3OD=3OC,
∴,
∵∠COE=∠FOC,
∴△COE∽△FOC,
∴∠OCF=∠DEC=90°,
∴CF是⊙O的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)點(diǎn)A(4,1)的直線與反比例函數(shù)y=的圖象交于點(diǎn)A、C,AB⊥y軸,垂足為B,連接BC.
(1)求反比例函數(shù)的表達(dá)式;
(2)若△ABC的面積為6,求直線AC的函數(shù)表達(dá)式;
(3)在(2)的條件下,點(diǎn)P在雙曲線位于第一象限的圖象上,若∠PAC=90°,則點(diǎn)P的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD的邊AB上取一點(diǎn)E,連接CE,將△BCE沿CE翻折,點(diǎn)B恰好與對(duì)角線AC上的點(diǎn)F重合,連接DF,若BE=1,則△CDF的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形OABC的長(zhǎng)是12m,寬是4m,按照?qǐng)D中所示的平面直角坐標(biāo)系,拋物線可以用y=﹣x2+2x+c表示.
(1)請(qǐng)寫(xiě)出該拋物線的函數(shù)關(guān)系式;
(2)一輛貨運(yùn)汽車(chē)載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車(chē)道,那么這輛貨車(chē)能否安全通過(guò)?
(3)在拋物線形拱壁上需要安裝兩排燈,使它們離地面的高度相等.如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,點(diǎn)D在邊BC上,AE∥BC,BE與AD、AC分別相交于點(diǎn)F、G, .
(1)求證:△CAD∽△CBG;
(2)聯(lián)結(jié)DG,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一漁船由西往東航行,在A點(diǎn)測(cè)得海島C位于北偏東60°的方向,前進(jìn)30海里到達(dá)B點(diǎn),此時(shí),測(cè)得海島C位于北偏東30°的方向,求海島C到航線AB的距離CD的長(zhǎng)(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,將∠ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)一定角度后,BC的對(duì)應(yīng)邊B'C'交CD邊于點(diǎn)G.連接BB'、CC'.若AD=7,CG=4,AB'=B'G,則
=__(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:方程cx2+bx+a=0是一元二次方程ax2+bx+c=0的倒方程.
(1)已知x=2是x2+2x+c=0的倒方程的解,求c的值;
(2)若一元二次方程ax2﹣2x+c=0無(wú)解,求證:它的倒方程也一定無(wú)解;
(3)一元二次方程ax2﹣2x+c=0(a≠c)與它的倒方程只有一個(gè)公共解,它的倒方程只有一個(gè)解,求a和c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn).拋物線上有一點(diǎn),且.
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo).
(2)當(dāng)點(diǎn)位于軸下方時(shí),求面積的最大值.
(3)①設(shè)此拋物線在點(diǎn)與點(diǎn)之間部分(含點(diǎn)和點(diǎn))最高點(diǎn)與最低點(diǎn)的縱坐標(biāo)之差為.求關(guān)于的函數(shù)解析式,并寫(xiě)出自變量的取值范圍;
②當(dāng)時(shí),點(diǎn)的坐標(biāo)是___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com