(2009•眉山)如圖,點(diǎn)A在雙曲線y=上,且OA=4,過A作AC⊥x軸,垂足為C,OA的垂直平分線交OC于B,則△ABC的周長(zhǎng)為( )

A.
B.5
C.
D.
【答案】分析:根據(jù)線段垂直平分線的性質(zhì)可知AB=OB,由此推出△ABC的周長(zhǎng)=OC+AC,設(shè)OC=a,AC=b,根據(jù)勾股定理和函數(shù)解析式即可得到關(guān)于a、b的方程組,解之即可求出△ABC的周長(zhǎng).
解答:解:∵OA的垂直平分線交OC于B,
∴AB=OB,
∴△ABC的周長(zhǎng)=OC+AC,
設(shè)OC=a,AC=b,
則:,
解得a+b=2,
即△ABC的周長(zhǎng)=OC+AC=2
故選A.
點(diǎn)評(píng):本題考查反比例函數(shù)圖象性質(zhì)和線段中垂線性質(zhì),以及勾股定理的綜合應(yīng)用,關(guān)鍵是一個(gè)轉(zhuǎn)換思想,即把求△ABC的周長(zhǎng)轉(zhuǎn)換成求OC+AC即可解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(42)(解析版) 題型:解答題

(2009•眉山)如圖,已知直線y=x+1與y軸交于點(diǎn)A,與x軸交于點(diǎn)D,拋物線y=x2+bx+c與直線交于A、E兩點(diǎn),與x軸交于B、C兩點(diǎn),且B點(diǎn)坐標(biāo)為(1,0).
(1)求該拋物線的解析式;
(2)動(dòng)點(diǎn)P在x軸上移動(dòng),當(dāng)△PAE是直角三角形時(shí),求點(diǎn)P的坐標(biāo)P;
(3)在拋物線的對(duì)稱軸上找一點(diǎn)M,使|AM-MC|的值最大,求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年3月浙江省杭州市九年級(jí)月考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•眉山)如圖,點(diǎn)A在雙曲線y=上,且OA=4,過A作AC⊥x軸,垂足為C,OA的垂直平分線交OC于B,則△ABC的周長(zhǎng)為( )

A.
B.5
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)考前30天沖刺得分專練8:二次函數(shù)(解析版) 題型:解答題

(2009•眉山)如圖,已知直線y=x+1與y軸交于點(diǎn)A,與x軸交于點(diǎn)D,拋物線y=x2+bx+c與直線交于A、E兩點(diǎn),與x軸交于B、C兩點(diǎn),且B點(diǎn)坐標(biāo)為(1,0).
(1)求該拋物線的解析式;
(2)動(dòng)點(diǎn)P在x軸上移動(dòng),當(dāng)△PAE是直角三角形時(shí),求點(diǎn)P的坐標(biāo)P;
(3)在拋物線的對(duì)稱軸上找一點(diǎn)M,使|AM-MC|的值最大,求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)考前30天沖刺得分專練7:反比例函數(shù)(解析版) 題型:選擇題

(2009•眉山)如圖,點(diǎn)A在雙曲線y=上,且OA=4,過A作AC⊥x軸,垂足為C,OA的垂直平分線交OC于B,則△ABC的周長(zhǎng)為( )

A.
B.5
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年安徽省蕪湖市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

(2009•眉山)如圖,已知直線y=x+1與y軸交于點(diǎn)A,與x軸交于點(diǎn)D,拋物線y=x2+bx+c與直線交于A、E兩點(diǎn),與x軸交于B、C兩點(diǎn),且B點(diǎn)坐標(biāo)為(1,0).
(1)求該拋物線的解析式;
(2)動(dòng)點(diǎn)P在x軸上移動(dòng),當(dāng)△PAE是直角三角形時(shí),求點(diǎn)P的坐標(biāo)P;
(3)在拋物線的對(duì)稱軸上找一點(diǎn)M,使|AM-MC|的值最大,求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案