【題目】某商廈進貨員預(yù)測一種應(yīng)季襯衫能暢銷市場,就用0.8萬元購進這種襯衫,面市后果然供不應(yīng)求.于是,商廈又用1.76萬元購進了第二批這種襯衫,所購數(shù)量是第一批購進數(shù)量的2倍,但單價貴了4元,商廈銷售這種襯衫時每件預(yù)定售價都是58元.
(1)求這種襯衫原進價為每件多少元?
(2)經(jīng)過一段時間銷售,根據(jù)市場飽和情況,商廈經(jīng)理決定對剩余的100件襯衫進行打折銷售,以提高回款速度,要使這兩批襯衫的總利潤不少于6300元,最多可以打幾折?
【答案】(1)40.(2)5折;
【解析】
試題分析:(1)設(shè)這種襯衫原進價為每件x元.根據(jù)“用1.76萬元購進了第二批這種襯衫,所購數(shù)量是第一批購進數(shù)量的2倍,但單價貴了4元”列出方程并解答,注意需要驗根;
(2)設(shè)打m折,根據(jù)題意列出不等式即可.
試題解析:(1)設(shè)這種襯衫原進價為每件x元
=,
解得:x=40.
經(jīng)檢驗:x=40是原分式方程的解,
答:這種襯衫原進價為每件40元;
(2)設(shè)打m折,
8000÷40×3=600,58=29000,
29000+58×100×≥8000+17600+6300,
解得:m≥5.
答:最多可以打5折.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點A的坐標(biāo)為(3,0),點P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置…,則正方形鐵片連續(xù)旋轉(zhuǎn)2017次后,點P的坐標(biāo)為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,∠ACB=90°,點D(0,-3),M(4,-3).
(1)如圖1,若點C與點O重合,且A(-3,a),B(3,b),a+b-8=0,求△ACB的面積;
(2)如圖2,若∠AOG=50°,求∠CEF的度數(shù);
(3)如圖3,旋轉(zhuǎn)△ABC,使∠C的頂點C在直線DM與x軸之間,N為AC上一點,E為BC與DM的交點∠NEC+∠CEF=180°,下列兩個結(jié)論:
①∠NEF-∠AOG為定值;②為定值,其中只有一個是正確的,請你判斷出正確的結(jié)論,并求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(5,0)兩點,直線y=﹣x+3與y軸交于點C,與x軸交于點D.點P是x軸上方的拋物線上一動點,過點P作PF⊥x軸于點F,交直線CD于點E.設(shè)點P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)若PE=5EF,求m的值;
(3)若點E′是點E關(guān)于直線PC的對稱點、是否存在點P,使點E′落在y軸上?若存在,請直接寫出相應(yīng)的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩條平行直線被第三條直線所截,其中一組同旁內(nèi)角之差為90°,則這兩個角的度數(shù)分別是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2013年投入教育經(jīng)費2500萬元,2015年投入教育經(jīng)費3025萬元.
(1)求2013年至2015年該地區(qū)投入教育經(jīng)費的年平均增長率;
(2)根據(jù)(1)所得的年平均增長率,預(yù)計2016年該地區(qū)將投入教育經(jīng)費多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com