如圖是兩個相似的三角形,求∠C,∠D,x的值.

解:∵△ABC中,∠B=30°,∠A=45°,
∴∠C=180°-30°-45°=105°,
∵△ABC∽△DEF,
∴∠D=∠A=45°,∠C=∠F=105°,=,即=,解得x=2.
分析:由相似三角形的對應(yīng)角相等求出∠D,∠D的度數(shù),根據(jù)相似三角形的對應(yīng)邊成比例求出x的值即可.
點評:本題考查的是相似三角形的性質(zhì),熟知相似三角形的對應(yīng)角相等,對應(yīng)邊的比相等是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們知道,“直角三角形斜邊上的高線將三角形分成兩個與原三角形相似的直角三角形”用這一方法,將矩形ABCD分割成大小不同的七個相似直角三角形.按從大到小的順序編號為①至⑦(如圖),從而割成一副“三角七巧板”.已精英家教網(wǎng)知線段AB=1,∠BAC=θ.
(1)請用θ的三角函數(shù)表示線段BE的長
 

(2)圖中與線段BE相等的線段是
 

(3)仔細觀察圖形,求出⑦中最短的直角邊DH的長.(用θ的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖的網(wǎng)格中有一個△ABC,試畫一個與△ABC大小不同的△A′B′C′,使∠A′=∠A,∠B′=∠B.比較△ABC和△A′B′C′,∠C與∠C′的關(guān)系是
 
,對應(yīng)邊的比
AB
A′B′
,
AC
A′C′
,
BC
B′C′
的關(guān)系是
 
,這兩個三角形的關(guān)系是
 
.由此我們得到判斷兩個三角形相似的一個較為簡便的方法:
 
對應(yīng)相等的兩個三角形相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖的網(wǎng)格中有一個△ABC,試畫一個與△ABC大小不同的△A′B′C′,使∠A′=∠A,∠B′=∠B.比較△ABC和△A′B′C′,∠C與∠C′的關(guān)系是______,對應(yīng)邊的比
AB
A′B′
,
AC
A′C′
BC
B′C′
的關(guān)系是______,這兩個三角形的關(guān)系是______.由此我們得到判斷兩個三角形相似的一個較為簡便的方法:______對應(yīng)相等的兩個三角形相似.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第28章《銳角三角函數(shù)》中考題集(32):28.2 解直角三角形(解析版) 題型:解答題

我們知道,“直角三角形斜邊上的高線將三角形分成兩個與原三角形相似的直角三角形”用這一方法,將矩形ABCD分割成大小不同的七個相似直角三角形.按從大到小的順序編號為①至⑦(如圖),從而割成一副“三角七巧板”.已知線段AB=1,∠BAC=θ.
(1)請用θ的三角函數(shù)表示線段BE的長______;
(2)圖中與線段BE相等的線段是______;
(3)仔細觀察圖形,求出⑦中最短的直角邊DH的長.(用θ的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:《24.3.2 相似三角形的判定》2010年同步練習(xí)1(解析版) 題型:填空題

如圖的網(wǎng)格中有一個△ABC,試畫一個與△ABC大小不同的△A′B′C′,使∠A′=∠A,∠B′=∠B.比較△ABC和△A′B′C′,∠C與∠C′的關(guān)系是    ,對應(yīng)邊的比的關(guān)系是    ,這兩個三角形的關(guān)系是    .由此我們得到判斷兩個三角形相似的一個較為簡便的方法:    對應(yīng)相等的兩個三角形相似.

查看答案和解析>>

同步練習(xí)冊答案