【題目】閱讀下列材料,然后解決問題:

截長法與補(bǔ)短法在證明線段的和、差、倍、分等問題中有著廣泛的應(yīng)用.具體的做法是在某條線段上截取一條線段等于某特定線段,或?qū)⒛硹l線段延長,使之與某特定線段相等,再利用全等三角形的性質(zhì)等有關(guān)知識(shí)來解決數(shù)學(xué)問題.

如圖1,在ABC中,若AB12,AC8,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點(diǎn)E使DEAD,再連接BE,把ABAC、2AD集中在ABE中.利用三角形三邊的關(guān)系即可得4<AE<20 ,則2<AD<10.

1)問題解決:受到上題解法的啟發(fā),如圖2,在正方形ABCD中,已知:∠EAF=45°,角的兩邊AEAF分別與BC、CD相交于點(diǎn)E、F,若BE=2,DF=3,求EF的長.可延長 CDE′,使得DE′BE,連接AE′,先證ABE≌△ADE′,進(jìn)一步證明 AEF≌△AE′F , 即可得EF=E′F, 那么EF=_________.

2)問題拓展:

如圖3,在⊙O中,AB、AD是⊙O的弦,且AB=AD,M、N是⊙O上的兩點(diǎn),∠MANBAD.

①如圖4,連接MNMD,求證:MH=BM+DH,DMAN

②若點(diǎn)C(點(diǎn)C不與點(diǎn)A、D、N重合)上,連接CBCD分別交AM、AN或其延長線于點(diǎn)E、F,直接寫出EF、BE、DF之間的等式關(guān)系.

【答案】15;(2)①見解析,②EFBE+DFDFEF+BE

【解析】

1)根據(jù)題目給定的思路進(jìn)行求解即可;

2)①延長MD到點(diǎn)M′,使得DM′=BM,連接AM′,如圖5.仿照材料中的證明思路可證到AM=AM′,∠MAN=M′AN,然后利用等腰三角形的性質(zhì)即可解決問題.②分兩種情況討論:.當(dāng)點(diǎn)C上時(shí),如圖1、2.當(dāng)點(diǎn)C上時(shí),如圖3.借鑒①中的證明思路就可得到結(jié)論.

1)延長 CDE′,使得DE′BE,連接AE′,

∵四邊形ABCD是正方形,

AB=AB,B=ADC=90°,

∴∠AD E′=90°,

DE′BE

ABE≌△ADE′,

AE′=AE,∠BAE=DA E′

∴∠E′AE=90°,

∵∠EAF=45°,

∴∠E′AF=45°

∴∠E′AF=EAF,

AEFAE′F中,

,

EF=E′F

E′F=DE′+DF=BE+DF=2+3=5,

EF=5.

2)①延長MD到點(diǎn)M′,使得DM′=BM,連接AM′,如圖5

∵∠ADM′+ADM=180°,∠ABM+ADM=180°,

∴∠ABM=ADM′

ABMADM′中,

∴△ABM≌△ADM′SAS).

AM=AM′BAM=DAM′

∴∠MAM′=BAD

∵∠MAN=BAD,

∴∠MAN=MAM′

∴∠MAN=M′AN

AM=AM′,∠MAN=M′AN,

MH=M′HAHMM′

MH=M′H=DM′+DH=BM+DH,DMAN

②②.當(dāng)點(diǎn)C上時(shí),如圖12

同理可得:EF=BE+DF

.當(dāng)點(diǎn)C上時(shí),如圖3

同理可得:DFEF+BE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, ,點(diǎn)分別是的中點(diǎn), 延長線上的一點(diǎn),且

(1)求證: ;

(2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖數(shù)軸上AB、C三點(diǎn)對(duì)應(yīng)的數(shù)分別是a、b7,滿足,,P為數(shù)軸上一動(dòng)點(diǎn),點(diǎn)PA出發(fā),沿?cái)?shù)軸正方向以每秒個(gè)單位長度的速度勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)在射線CA上向點(diǎn)A勻速運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā).

1)求a、b的值

2)當(dāng)P運(yùn)動(dòng)到線段OB的中點(diǎn)時(shí),點(diǎn)Q運(yùn)動(dòng)的位置恰好是線段AB靠近點(diǎn)B的三等分點(diǎn),求點(diǎn)Q的運(yùn)動(dòng)速度

3)在的條件下,當(dāng)P、Q兩點(diǎn)間的距離是6個(gè)單位長度時(shí),OP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l上有一點(diǎn)O,點(diǎn)A、B同時(shí)從O出發(fā),在直線l上分別向左、向右作勻速運(yùn)動(dòng),且A、B的速度比為1:2,設(shè)運(yùn)動(dòng)時(shí)間為ts.

(1)當(dāng)t=2s時(shí),AB=12cm.此時(shí),

①在直線l上畫出A、B兩點(diǎn)運(yùn)動(dòng)2秒時(shí)的位置,并回答點(diǎn)A運(yùn)動(dòng)的速度是 cm/s; 點(diǎn)B運(yùn)動(dòng)的速度是 cm/s.

②若點(diǎn)P為直線l上一點(diǎn),且PA﹣PB=OP,求的值;

(2)在(1)的條件下,若A、B同時(shí)按原速向左運(yùn)動(dòng),再經(jīng)過幾秒,OA=2OB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求知中學(xué)有一塊四邊形的空地ABCD,如下圖所示,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°,AB=3m,BC=12m,CD=13mDA=4m,若每平方米草皮需要250元,問學(xué)校需要投入多少資金買草皮?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)的門票銷售分兩類:一類為散客門票,價(jià)格為/張;另一類為團(tuán)體門票(一次性購買門票張以上),每張門票價(jià)格在散客門票價(jià)格的基礎(chǔ)上打折,某班部分同學(xué)要去該景點(diǎn)旅游,設(shè)參加旅游人,購買門票需要

1)如果每人分別買票,求之間的函數(shù)關(guān)系式:

2)如果購買團(tuán)體票,求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)請(qǐng)根據(jù)人數(shù)變化設(shè)計(jì)一種比較省錢的購票方式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校教學(xué)樓(甲樓)的頂部E和大門A之間掛了一些彩旗.小穎測(cè)得大門A距甲樓的距離AB31cm,在A處測(cè)得甲樓頂部E處的仰角是31°.

(1)求甲樓的高度及彩旗的長度;(精確到0.01m

(2)若小穎在甲樓樓底C處測(cè)得學(xué)校后面醫(yī)院樓(乙樓)樓頂G處的仰角為40°,爬到甲樓樓頂F處測(cè)得乙樓樓頂G處的仰角為19°,求乙樓的高度及甲乙兩樓之間的距離.(精確到0.01m

(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,DAB的中點(diǎn),E,F分別是AC,BC.上的點(diǎn)(點(diǎn)E不與端點(diǎn)AC重合),且連接EF并取EF的中點(diǎn)O,連接DO并延長至點(diǎn)G,使,連接DE,DFGE,GF

(1)求證:四邊形EDFG是正方形;

(2)直接寫出當(dāng)點(diǎn)E在什么位置時(shí),四邊形EDFG的面積最小?最小值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案