【題目】如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù) (k為常數(shù),且k≠0)的圖象都經(jīng)過點(diǎn)A(m,2)
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象直接比較:當(dāng)x>0時(shí),y1和y2的大。

【答案】
(1)解:將A的坐標(biāo)代入y1=x+1,

得:m+1=2,

解得:m=1,

故點(diǎn)A坐標(biāo)為(1,2),

將點(diǎn)A的坐標(biāo)代入: ,

得:2=

解得:k=2,

則反比例函數(shù)的表達(dá)式y(tǒng)2=


(2)解:結(jié)合函數(shù)圖象可得:

當(dāng)0<x<1時(shí),y1<y2;

當(dāng)x=1時(shí),y1=y2;

當(dāng)x>1時(shí),y1>y2


【解析】(1)將A點(diǎn)代入一次函數(shù)解析式求出m的值,然后將A點(diǎn)坐標(biāo)代入反比例函數(shù)解析式,求出k的值即可得出反比例函數(shù)的表達(dá)式;(2)結(jié)合函數(shù)圖象即可判斷y1和y2的大小.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過點(diǎn)A(13,0),直線y=kx﹣3k+4與⊙O交于B、C兩點(diǎn),則弦BC的長的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是半圓O上的一點(diǎn),AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.
(1)判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若E是 的中點(diǎn),⊙O的半徑為1,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于t的不等式組 ,恰有三個(gè)整數(shù)解,則關(guān)于x的一次函數(shù) 的圖象與反比例函數(shù) 的圖象的公共點(diǎn)的個(gè)數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物體從P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)所用時(shí)間為7秒,其運(yùn)動(dòng)速度v(米每秒)關(guān)于時(shí)間t(秒)的函數(shù)關(guān)系如圖所示.某學(xué)習(xí)小組經(jīng)過探究發(fā)現(xiàn):該物體前進(jìn)3秒運(yùn)動(dòng)的路程在數(shù)值上等于矩形AODB的面積.由物理學(xué)知識還可知:該物體前t(3<t≤7)秒運(yùn)動(dòng)的路程在數(shù)值上等于矩形AODB的面積與梯形BDNM的面積之和. 根據(jù)以上信息,完成下列問題:

(1)當(dāng)3<t≤7時(shí),用含t的式子表示v;
(2)分別求該物體在0≤t≤3和3<t≤7時(shí),運(yùn)動(dòng)的路程s(米)關(guān)于時(shí)間t(秒)的函數(shù)關(guān)系式;并求該物體從P點(diǎn)運(yùn)動(dòng)到Q總路程的 時(shí)所用的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中BC=8,CD=6,將△ABE沿BE折疊,使點(diǎn)A恰好落在對角線BD上F處,則DE的長是(
A.3
B.
C.5
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“雙十二”期間,A,B兩個(gè)超市開展促銷活動(dòng),活動(dòng)方式如下:

A超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;

B超市:購物金額打8

某學(xué)校計(jì)劃購買某品牌的籃球做獎(jiǎng)品,該品牌的籃球在AB兩個(gè)超市的標(biāo)價(jià)相同根據(jù)商場的活動(dòng)方式:

(1)若一次性付款4200元購買這種籃球,則在B商場購買的數(shù)量比在A商場購買的數(shù)量多5個(gè)請求出這種籃球的標(biāo)價(jià);

(2)學(xué)校計(jì)劃購買100個(gè)籃球,請你設(shè)計(jì)一個(gè)購買方案,使所需的費(fèi)用最少.(直接寫出方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:任意一個(gè)有理數(shù)與無理數(shù)的和為無理數(shù),任意一個(gè)不為零的有理數(shù)與一個(gè)無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果ax+b=0,其中a、b為有理數(shù),x為無理數(shù),那么a=0且b=0.

運(yùn)用上述知識,解決下列問題:

(1)如果a-2+b+3=0,其中a、b為有理數(shù),那么a= ,b= ;

(2)如果2+a-1-b=5,其中a、b為有理數(shù),求a+2b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=2 ,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案