【題目】若關(guān)于t的不等式組 ,恰有三個整數(shù)解,則關(guān)于x的一次函數(shù) 的圖象與反比例函數(shù) 的圖象的公共點的個數(shù)為 .
【答案】1或0
【解析】解:不等式組的解為:a≤t≤ , ∵不等式組恰有3個整數(shù)解,
∴﹣2<a≤﹣1.
聯(lián)立方程組 ,
得: x2﹣ax﹣3a﹣2=0,
△=a2+3a+2=(a+ )2﹣ =(a+1)(a+2)
這是一個二次函數(shù),開口向上,與x軸交點為(﹣2,0)和(﹣1,0),對稱軸為直線a=﹣ ,
其圖象如下圖所示:
由圖象可見:
當a=﹣1時,△=0,此時一元二次方程有兩個相等的根,即一次函數(shù)與反比例函數(shù)有一個交點;
當﹣2<a<﹣1時,△<0,此時一元二次方程無實數(shù)根,即一次函數(shù)與反比例函數(shù)沒有交點.
∴交點的個數(shù)為:1或0.
所以答案是:1或0.
【考點精析】本題主要考查了一元一次不等式組的整數(shù)解的相關(guān)知識點,需要掌握使不等式組中的每個不等式都成立的未知數(shù)的值叫不等式組的解,一個不等式組的所有的解組成的集合,叫這個不等式組的解集(簡稱不等式組的解)才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在兩建筑物之間有一旗桿,高15米,從A點經(jīng)過旗桿頂點恰好看到矮建筑物的墻角C點,且俯角α為60°,又從A點測得D點的俯角β為30°,若旗桿底點G為BC的中點,則矮建筑物的高CD為( )
A.20米
B.10 米
C.15 米
D.5 米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用直尺和圓規(guī)畫一個角等于已知角,是運用了“全等三角形的對應角相等”這一性質(zhì),其全等的依據(jù)是( )
A.SAS B.ASA C.AAS D.SSS
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在圖①中的正方形中剪去一個邊長為2a+b的正方形,將剩余的部分按圖②的方式拼成一個長方形.
(1)求剪去正方形的面積;
(2)求拼成的長方形的長、寬以及它的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù) (k為常數(shù),且k≠0)的圖象都經(jīng)過點A(m,2)
(1)求點A的坐標及反比例函數(shù)的表達式;
(2)結(jié)合圖象直接比較:當x>0時,y1和y2的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=12cm,點C是線段AB上的一點,BC=2AC.動點P從點A出發(fā),以3cm/s的速度向右運動,到達點B后立即返回,以3cm/s的速度向左運動;動點Q從點C出發(fā),以1cm/s的速度向右運動.設(shè)它們同時出發(fā),運動時間為ts.當點P與點Q第二次重合時,P,Q兩點停止運動.
(1)AC= cm,BC= cm;
(2)當t為何值時,AP=PQ;
(3)當t為何值時,P與Q第一次相遇;
(4)當t為何值時,PQ=1cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下面的內(nèi)容,再解決問題,
例題:若m2+2mn+2n2-6n+9=0,求m和n的值.
∵m2+2mn+2n2-6n+9=0
∴m2+2mn+n2+n2-6n+9=0
∴(m+n)2+(n-3)2=0
∴m+n=0,n-3=0
∴m=-3,n=3
問題(1)若x2+2y2-2xy-4y+4=0,求xy的值.
(2)已知a,b,c是△ABC的三邊長,滿足a2+b2-6a-6b+18+| 3-c |=0,請問△ABC是怎樣形狀的三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com