如圖,在下面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(b,c)三點(diǎn),其中a、b、c滿足關(guān)系式|a-精英家教網(wǎng)2|+(b-3)2=0,(c-4)2≤0
(1)求a、b、c的值;
(2)如果在第二象限內(nèi)有一點(diǎn)P(m,
12
),請(qǐng)用含m的式子表示四邊形ABOP的面積;
(3)在(2)的條件下,是否存在點(diǎn)P,使四邊形ABOP的面積與△ABC的面積相等?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
分析:(1)用非負(fù)數(shù)的性質(zhì)求解;
(2)把四邊形ABOP的面積看成兩個(gè)三角形面積和,用m來(lái)表示;
(3)△ABC可求,是已知量,根據(jù)題意,方程即可.
解答:解:(1)由已知|a-2|+(b-3)2=0,(c-4)2≤0及(c-4)2≥0可得:a=2,b=3,c=4;

(2)∵S△ABO=
1
2
×2×3=3,S△APO=
1
2
×2×(-m)=-m,
∴S四邊形ABOP=S△ABO+S△APO=3+(-m)=3-m

(3)因?yàn)?span id="oexgv5h" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">S△ABC=
1
2
×4×3=6,
若S四邊形ABOP=S△ABC=3-m=6,則m=-3,
所以存在點(diǎn)P(-3,
1
2
)使S四邊形ABOP=S△ABC
點(diǎn)評(píng):本題考查了非負(fù)數(shù)的性質(zhì),三角形及四邊形面積的求法,根據(jù)題意容易解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖(1),在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.容易證得:CE=CF;
(1)在圖1中,若G在AD上,且∠GCE=45°.試猜想GE、BE、GD三線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)運(yùn)用(1)中解答所積累的經(jīng)驗(yàn)和知識(shí),完成下面兩題:
①如圖(2),在四邊形ABCD中∠B=∠D=90°,BC=CD,點(diǎn)E,點(diǎn)G分別是AB邊,AD邊上的動(dòng)點(diǎn).若∠BCD=α°,∠ECG=β°,試探索當(dāng)α和β滿足什么關(guān)系時(shí),圖(1)中GE、BE、GD三線段之間的關(guān)系仍然成立,并說(shuō)明理由.
②在平面直角坐標(biāo)中,邊長(zhǎng)為1的正方形OABC的兩頂點(diǎn)A、C分別在y軸、x軸的正半軸上,點(diǎn)O在原點(diǎn).現(xiàn)將正方形OABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)A點(diǎn)第一次落在直線y=x上時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N(如圖(3)).設(shè)△MBN的周長(zhǎng)為p,在旋轉(zhuǎn)正方形OABC的過(guò)程中,p值是否有變化?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:解題升級(jí)  解題快速反應(yīng)一典通  九年級(jí)級(jí)數(shù)學(xué) 題型:044

數(shù)學(xué)課上,老師出示圖和下面條件:

如圖,在直角坐標(biāo)平面內(nèi),O為坐標(biāo)原點(diǎn),A點(diǎn)坐標(biāo)為(1,0),點(diǎn)B在x軸上且在點(diǎn)A的右側(cè),AB=OA.過(guò)點(diǎn)A和B作x軸的垂線,分別交二次函數(shù)y=x2的圖像于點(diǎn)C和D.直線OC交BD于點(diǎn)M,直線CD交y軸于點(diǎn)H.記點(diǎn)C、D的橫坐標(biāo)分別為xC、xD,點(diǎn)H的縱坐標(biāo)為yH

同學(xué)發(fā)現(xiàn)兩個(gè)結(jié)論:①S△CMD∶S梯形ABMC=2∶3;②數(shù)值相等關(guān)系:xC·xD=-yH

(1)請(qǐng)你驗(yàn)證結(jié)論①和結(jié)論②成立;

(2)請(qǐng)你研究:如果將上述條件“A點(diǎn)坐標(biāo)為(1,0)”改為“A點(diǎn)坐標(biāo)為(t,0)(t>0)”,其他條件不變,結(jié)論①是否仍成立?(請(qǐng)說(shuō)明理由)

(3)進(jìn)一步研究:如果將上述條件“A點(diǎn)坐標(biāo)為(1,0)”改為“A點(diǎn)坐標(biāo)為(t,0)(t>0)”,又將條件“y=x2”改為“y=ax2(a>0)”,其他條件不變,那么xC、xD和yH有怎樣的數(shù)值關(guān)系?(寫(xiě)出結(jié)果并說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖(1),在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.容易證得:CE=CF;
(1)在圖1中,若G在AD上,且∠GCE=45°.試猜想GE、BE、GD三線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)運(yùn)用(1)中解答所積累的經(jīng)驗(yàn)和知識(shí),完成下面兩題:
①如圖(2),在四邊形ABCD中∠B=∠D=90°,BC=CD,點(diǎn)E,點(diǎn)G分別是AB邊,AD邊上的動(dòng)點(diǎn).若∠BCD=α°,∠ECG=β°,試探索當(dāng)α和β滿足什么關(guān)系時(shí),圖(1)中GE、BE、GD三線段之間的關(guān)系仍然成立,并說(shuō)明理由.
②在平面直角坐標(biāo)中,邊長(zhǎng)為1的正方形OABC的兩頂點(diǎn)A、C分別在y軸、x軸的正半軸上,點(diǎn)O在原點(diǎn).現(xiàn)將正方形OABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)A點(diǎn)第一次落在直線y=x上時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N(如圖(3)).設(shè)△MBN的周長(zhǎng)為p,在旋轉(zhuǎn)正方形OABC的過(guò)程中,p值是否有變化?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年江蘇省鹽城市建湖縣上岡實(shí)驗(yàn)初中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖(1),在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.容易證得:CE=CF;
(1)在圖1中,若G在AD上,且∠GCE=45°.試猜想GE、BE、GD三線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)運(yùn)用(1)中解答所積累的經(jīng)驗(yàn)和知識(shí),完成下面兩題:
①如圖(2),在四邊形ABCD中∠B=∠D=90°,BC=CD,點(diǎn)E,點(diǎn)G分別是AB邊,AD邊上的動(dòng)點(diǎn).若∠BCD=α°,∠ECG=β°,試探索當(dāng)α和β滿足什么關(guān)系時(shí),圖(1)中GE、BE、GD三線段之間的關(guān)系仍然成立,并說(shuō)明理由.
②在平面直角坐標(biāo)中,邊長(zhǎng)為1的正方形OABC的兩頂點(diǎn)A、C分別在y軸、x軸的正半軸上,點(diǎn)O在原點(diǎn).現(xiàn)將正方形OABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)A點(diǎn)第一次落在直線y=x上時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N(如圖(3)).設(shè)△MBN的周長(zhǎng)為p,在旋轉(zhuǎn)正方形OABC的過(guò)程中,p值是否有變化?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案