在平面直角坐標(biāo)系xOy中,拋物線y=mx2+3x+5+m與x軸交于A、B兩點(diǎn)(點(diǎn)A
在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,4),D為OC的中點(diǎn).
(1)求m的值;
(2)拋物線的對(duì)稱軸與 x軸交于點(diǎn)E,在直線AD上是否存在點(diǎn)F,使得以點(diǎn)A、B、F為頂點(diǎn)的三角形與△ADE相似?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)G,使△GBC中BC邊上的高為?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)由拋物線y=mx2+3m+5+m與y軸交于點(diǎn)C(0,4),把C點(diǎn)的坐標(biāo)代入解析式建立方程,求出方程的解,就可以求出m的值.
(2)先求出拋物線與x軸的交點(diǎn)坐標(biāo),根據(jù)拋物線的對(duì)稱性求出E點(diǎn)的坐標(biāo),然后根據(jù)對(duì)應(yīng)角不同的情況就可以求出F的不同坐標(biāo).
(3)先由待定系數(shù)法求出直線BC的解析式,然后由題目的條件求出與直線BC平行且距離為的直線的解析式,再由拋物線的對(duì)稱軸與這些與BC平行的直線的解析式構(gòu)建方程組求出其解,就可以求出G的坐標(biāo).
解答:解:(1)拋物線y=mx2+3m+5+m與y軸交于點(diǎn)C(0,4),
∴5+m=4.
∴m=-1.



(2)拋物線的解析式為  y=-x2+3x+4.
可求拋物線與x軸的交點(diǎn)A(-1,0),B(4,0).
可求點(diǎn)E的坐標(biāo)
由圖知,點(diǎn)F在x軸下方的直線AD上時(shí),△ABF是鈍角三角形,不可能與△ADE相似,所以點(diǎn)F一定在x軸上方.
此時(shí)△ABF與△ADE有一個(gè)公共角,兩個(gè)三角形相似存在兩種情況:
①當(dāng)時(shí),由于E為AB的中點(diǎn),此時(shí)D為AF的中點(diǎn),
可求  F點(diǎn)坐標(biāo)為(1,4).
②當(dāng)時(shí),,
解得:AF=
如圖(2)過(guò)F點(diǎn)作FH⊥x軸,垂足為H.

∵D是OC的中點(diǎn),
∴OD=2,
∴由勾股定理得:
AD=,
,
∴OH=,
由勾股定理得:
FH==5
∴F的坐標(biāo)為(,5)

(3)在拋物線的對(duì)稱軸上存在符合題意的點(diǎn)G.
由題意,可知△OBC為等腰直角三角形,直線BC為y=-x+4.
如圖(3)∵M(jìn)Q∥BC,QP=,由勾股定理,得
∴CQ=5
∴可求與直線BC平行且距離為的直線為y=-x+9或y=-x-1.
∴點(diǎn)G在直線y=-x+9或y=-x-1上.
∵拋物線的對(duì)稱軸是直線,
,
解得:
∴點(diǎn)G的坐標(biāo)為()或(,-).
點(diǎn)評(píng):本題考查了兩條直線相交或平行的問(wèn)題,待定系數(shù)法求二次函數(shù)的解析式,相似三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),勾股定理的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,-2),在y軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的有
4
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c的對(duì)稱軸是x=1,并且經(jīng)過(guò)(-2,-5)和(5,-12)兩點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C 點(diǎn),D是線段BC上一點(diǎn)(不與點(diǎn)B、C重合),若以B、O、D為頂點(diǎn)的三角形與△BAC相似,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P在y軸上,點(diǎn)M在此拋物線上,若要使以點(diǎn)P、M、A、B為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)你直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個(gè)頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A、B、C三點(diǎn).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點(diǎn)B的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過(guò)點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過(guò)點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長(zhǎng);
(3)在拋物線上是否存在異于B、C的點(diǎn)M,使△MBC中BC邊上的高為7
2
?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點(diǎn)P,使△AOP與△AOB相似,則符合條件的點(diǎn)P共有
5
5
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點(diǎn)D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案