【題目】小慧家與文具店相距720米,小慧從家出發(fā),勻速步行12分鐘來到文具店,買文具用時4分鐘,因家中有事,沿原路勻速跑步返回家中,用時6分鐘.

1)小慧返回家中的速度比去文具店的速度快 /分鐘;

2)請你畫出這個過程中,小慧離家的距離與時間的函數(shù)圖象;

3)求小慧從家出發(fā)后經(jīng)過多少分鐘與她家距離為480.

【答案】160;(2)詳見解析;(3)小慧從家出發(fā)后8分鐘或18分鐘離家距離為480.

【解析】

(1)根據(jù)“速度=路程時間”求出兩個速度,然后兩者作差即可;

(2)根據(jù)題(1)求出的速度,分別列出各段時間內(nèi),離家的距離y與時間x的等式關(guān)系;

(3)根據(jù)題(2)的結(jié)論,令求解即可.

(1)小慧去文具店的速度為(米/分鐘)

小慧返回家中的速度為(米/分鐘)

故小慧返回家中的速度比去文具店的速度快米/分鐘;

(2)由題意和題(1)可知:

當(dāng)時,

當(dāng),即時,

當(dāng),即時,

因此,離家的距離y與時間x的函數(shù)圖象如下所示:

(3)由題(2)可知,

,則

解得

答:小慧從家出發(fā)后8分鐘或18分鐘離家距離為480米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:直線y=x與反比例函數(shù)y=(k>0)的圖象在第一象限內(nèi)交于點A(2,m).

(1)求m、k的值;

(2)點By軸負(fù)半軸上,若△AOB的面積為2,求AB所在直線的函數(shù)表達式;

(3)將△AOB沿直線AB向上平移,平移后A、O、B的對應(yīng)點分別為A'、O'、B',當(dāng)點O'恰好落在反比例函數(shù)y=的圖象上時,求點A'的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,厘米,厘米,點出發(fā),以每秒厘米的速度向運動,點同時出發(fā),以每秒厘米的速度向運動,其中一個動點到端點時,另一個動點也相應(yīng)停止運動,那么,當(dāng)以、、為頂點的三角形與相似時,運動時間為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示ABDEACDFAC=DF下列條件中,不能判斷ABC≌△DEF的是( 。

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖△ABC和△CDE均為等邊三角形,B、C、D三點在同一條直線上,連接線段BEAD交于點F,連接CF,

1)求證:∠FBC=FAC.

2)求∠BFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,是過點的一條直線,點關(guān)于直線的對稱點為,連接,,,其中分別交直線于點,.

1)若),請用的代數(shù)式表示

2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面內(nèi),,.

1)求證:

2)當(dāng)時,取的中點分別為,連接,如圖2,判斷的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A6,0),B0,4),點B關(guān)于x軸的對稱點為C點,點Dx軸的負(fù)半軸上,ABD的面積是30

1)求點D坐標(biāo);

2)若動點P從點B出發(fā),沿射線BC運動,速度為每秒1個單位,設(shè)P的運動時間為t秒,APC的面積為S,求St的關(guān)系式;

3)在(2)的條件下,同時點QD點出發(fā)沿x軸正方向以每秒2個單位速度勻速運動,若點R在過A點且平行于y軸的直線上,當(dāng)PQR為以PQ為直角邊的等腰直角三角形時,求滿足條件的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(模型建立)

如圖1,等腰直角三角形中,,直線經(jīng)過點,過于點,過于點.

求證:;

(模型應(yīng)用)

①已知直線軸交于點,與軸交于點,將直線繞著點逆時針旋轉(zhuǎn)至直線,如圖2,求直線的函數(shù)表達式;

②如圖3,在平面直角坐標(biāo)系中,點,作軸于點,作軸于點,是線段上的一個動點,點是直線上的動點且在第一象限內(nèi).問點、能否構(gòu)成以點為直角頂點的等腰直角三角形,若能,請直接寫出此時點的坐標(biāo),若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案