【題目】在⊙O 中,P是⊙O內(nèi)一點,過點P最短和最長的弦分別為6和10,則經(jīng)過點P且長度為整數(shù)的的弦共有( )條。
A.5
B.8
C.10
D.無數(shù)條

【答案】B
【解析】如圖,AB是直徑,OA=5cm,OP=4cm,過點P作CD⊥AB,交圓于點C,D兩點.

由垂徑定理知,點P是CD的中點,由勾股定理求得,PC=3cm,CD=6cm,則CD是過點P最短的弦,長為6cm;

AB是過P最長的弦,長為10cm.

由圓的對稱性知,過點P的弦的弦長長度為7cm,8cm,9cm的弦分別有2條,過點P的弦的弦長是6cm,10cm的各有1條,則總共有6+2=8條長度為整數(shù)的弦.

所以答案是:B.


【考點精析】利用垂徑定理對題目進行判斷即可得到答案,需要熟知垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個.

1)∠B+BDC=180°;(2)∠1=2;(3∠3=∠4;(4∠B=∠5

A.1B.2C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點為坐標(biāo)原點,點 為第一象限內(nèi)一點,點軸正半軸上,且
1)求點的坐標(biāo);
2)動點以每秒2個單位長度的速度,從點出發(fā),沿軸正半軸勻速運動,設(shè)點的運動時間為秒,的面積為,請用含有的式子表示,并直接寫出的取值范圍;
3)如圖2,在(2)的條件下,點坐標(biāo)為,連接,過點軸的垂線交于點,過點 軸的平行線,在點的運動過程中,直線上是否存在一點,使是以為腰的等腰直角三角形?若存在,求出點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件中,不能判斷四邊形ABCD是平行四邊形的為(  )

A. ABCD,ADBC

B. ABCD,ADBC

C. ABCD,ADBC

D. ABCD,ABCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是兩個全等的三角形,,.現(xiàn)將按如圖所示的方式疊放在一起,保持不動,運動,且滿足:點E在邊BC上運動(不與點BC重合),且邊DE始終經(jīng)過點A,EFAC交于點M .

(1)求證:∠BAE=MEC;

(2)當(dāng)EBC中點時,請求出MEMF的值;

(3)在的運動過程中,能否構(gòu)成等腰三角形?若能,請直接寫出所有符合條件的BE的長;若不能,則請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,AC是對角線,今有較大的直角三角板,一邊始終經(jīng)過點B,直角頂點P在射線AC上移動,另一邊交DC于點Q.

(1)如圖①,當(dāng)點Q在DC邊上時,猜想并寫出PB與PQ所滿足的數(shù)量關(guān)系,并加以證明;

(2)如圖②,當(dāng)點Q落在DC的延長線上時,猜想并寫出PB與PQ滿足的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABE=ACD=Rt,AE=ADABC=ACB.求證:∠BAE=CAD

請補全證明過程,并在括號里寫上理由.

證明:在ABC中,

∵∠ABC=ACB

AB= ( )

RtABERtACD中,

=AC, =AD

RtABERtACD( )

∴∠BAE=CAD( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=6,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點C1處,連接C1B,則BC1的最小值為(
A.2
B.3
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰△ABC中,ADBC交直線BC于點D,若AD=BC,則△ABC的頂角的度數(shù)為_____

查看答案和解析>>

同步練習(xí)冊答案